Sidney Coleman (1937–2007) earned his doctorate at Caltech under Murray Gell-Mann. Before completing his thesis, he was hired by Harvard and remained there his entire career. A celebrated particle theorist, he is perhaps best known for his brilliant lectures, given at Harvard and in a series of summer school courses at Erice, Sicily. Three times in the 1960s he taught a graduate course on Special and General Relativity; this book is based on lecture notes taken by three of his students and compiled by the Editors.
'Sidney Coleman was the master teacher of quantum field theory. All of us who knew him became his students and disciples. Sidneyâ (TM)s legendary course remains fresh and bracing, because he chose his topics with a sure feel for the essential, and treated them with elegant economy.'Frank WilczekNobel Laureate in Physics 2004Sidney Coleman was a physicist's physicist. He is largely unknown outside of the theoretical physics community, and known only by reputation to the younger generation. He was an unusually effective teacher, famed for his wit, his insight and his encyclopedic knowledge of the field to which he made many important contributions. There are many first-rate quantum field theory books (the venerable Bjorken and Drell, the more modern Itzykson and Zuber, the now-standard Peskin and Schroeder, and the recent Zee), but the immediacy of Prof. Coleman's approach and his ability to present an argument simply without sacrificing rigor makes his book easy to read and ideal for the student. Part of the motivation in producing this book is to pass on the work of this outstanding physicist to later generations, a record of his teaching that he was too busy to leave himself.
For almost two decades, Sidney Coleman has been giving review lectures on frontier topics in theoretical high-energy physics at the International School of Subnuclear Physics held each year at Erice, Sicily. This volume is a collection of some of the best of these lectures. To this day they have few rivals for clarity of exposition and depth of insight. Although very popular when first published, many of the lectures have been difficult to obtain recently. Graduate students and professionals in high-energy physics will welcome this collection by a master of the field.
Quantum field theory is the basic mathematical framework that is used to describe elementary particles. This textbook provides a complete and essential introduction to the subject. Assuming only an undergraduate knowledge of quantum mechanics and special relativity, this book is ideal for graduate students beginning the study of elementary particles. The step-by-step presentation begins with basic concepts illustrated by simple examples, and proceeds through historically important results to thorough treatments of modern topics such as the renormalization group, spinor-helicity methods for quark and gluon scattering, magnetic monopoles, instantons, supersymmetry, and the unification of forces. The book is written in a modular format, with each chapter as self-contained as possible, and with the necessary prerequisite material clearly identified. It is based on a year-long course given by the author and contains extensive problems, with password protected solutions available to lecturers at www.cambridge.org/9780521864497.
This book introduces college students and other readers to the uses of probability and statistics in the physical sciences, focusing on thermal and statistical physics and touching upon quantum physics. Widely praised as beautifully written and thoughtful, Reasoning About Luck explains concepts in a way that readers can understand and enjoy, even students who are not specializing in science and those outside the classroom — only some familiarity with basic algebra is necessary. Attentive readers will come away with a solid grasp of many of the basic concepts of physics and some excellent insights into the way physicists think and work. "If students who are not majoring in science understood no more physics than that presented by Ambegaokar, they would have a solid basis for thinking about physics and the other sciences." — Physics Today. "There is a real need for rethinking how we teach thermal physics—at all levels, but especially to undergraduates. Professor Ambegaokar has done just that, and given us an outstanding and ambitious textbook for nonscience majors. I find Professor Ambegaokar's style throughout the book to be graceful and witty, with a nice balance of both encouragement and admonishment." — American Journal of Physics.
Classical dynamics is traditionally treated as an early stage in the development of physics, a stage that has long been superseded by more ambitious theories. Here, in this book, classical dynamics is treated as a subject on its own as well as a research frontier. Incorporating insights gained over the past several decades, the essential principles of classical dynamics are presented, while demonstrating that a number of key results originally considered only in the context of quantum theory and particle physics, have their foundations in classical dynamics.Graduate students in physics and practicing physicists will welcome the present approach to classical dynamics that encompasses systems of particles, free and interacting fields, and coupled systems. Lie groups and Lie algebras are incorporated at a basic level and are used in describing space-time symmetry groups. There is an extensive discussion on constrained systems, Dirac brackets and their geometrical interpretation. The Lie-algebraic description of dynamical systems is discussed in detail, and Poisson brackets are developed as a realization of Lie brackets. Other topics include treatments of classical spin, elementary relativistic systems in the classical context, irreducible realizations of the Galileo and Poincaré groups, and hydrodynamics as a Galilean field theory. Students will also find that this approach that deals with problems of manifest covariance, the no-interaction theorem in Hamiltonian mechanics and the structure of action-at-a-distance theories provides all the essential preparatory groundwork for a passage to quantum field theory.This reprinting of the original text published in 1974 is a testimony to the vitality of the contents that has remained relevant over nearly half a century.
An innovative textbook that provides a unique approach to beginning research in cosmology and high energy astrophysics through a series of problems and answers.
In this short book, renowned theoretical physicist and author Carlo Rovelli gives a straightforward introduction to Einstein's General Relativity, our current theory of gravitation. Focusing on conceptual clarity, he derives all the basic results in the simplest way, taking care to explain the physical, philosophical and mathematical ideas at the heart of “the most beautiful of all scientific theories”. Some of the main applications of General Relativity are also explored, for example, black holes, gravitational waves and cosmology, and the book concludes with a brief introduction to quantum gravity. Written by an author well known for the clarity of his presentation of scientific ideas, this concise book will appeal to university students looking to improve their understanding of the principal concepts, as well as science-literate readers who are curious about the real theory of General Relativity, at a level beyond a popular science treatment.