Short-Circuits in AC and DC Systems

Short-Circuits in AC and DC Systems

Author: J. C. Das

Publisher: CRC Press

Published: 2017-10-24

Total Pages: 829

ISBN-13: 135123076X

DOWNLOAD EBOOK

This book provides an understanding of the nature of short-circuit currents, current interruption theories, circuit breaker types, calculations according to ANSI/IEEE and IEC standards, theoretical and practical basis of short-circuit current sources, and the rating structure of switching devices. The book aims to explain the nature of short-circuit currents, the symmetrical components for unsymmetrical faults, and matrix methods of solutions, which are invariably used on digital computers. It includes innovations, worked examples, case studies, and solved problems.


Power System Transients

Power System Transients

Author: Juan A. Martinez-Velasco

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 644

ISBN-13: 1420065300

DOWNLOAD EBOOK

Despite the powerful numerical techniques and graphical user interfaces available in present software tools for power system transients, a lack of reliable tests and conversion procedures generally makes determination of parameters the most challenging part of creating a model. Illustrates Parameter Determination for Real-World Applications Geared toward both students and professionals with at least some basic knowledge of electromagnetic transient analysis, Power System Transients: Parameter Determination summarizes current procedures and techniques for the determination of transient parameters for six basic power components: overhead line, insulated cable, transformer, synchronous machine, surge arrester, and circuit breaker. An expansion on papers published in the IEEE Transactions on Power Delivery, this text helps those using transient simulation tools (e.g., EMTP-like tools) to select the optimal determination method for their particular model, and it addresses commonly encountered problems, including: Lack of information Testing setups and measurements that are not recognized in international standards Insufficient studies to validate models, mainly those used in high-frequency transients Current built-in models that do not cover all requirements Illustrated with case studies, this book provides modeling guidelines for the selection of adequate representations for main components. It discusses how to collect the information needed to obtain model parameters and also reviews procedures for deriving them. Appendices summarize updated techniques for identifying linear systems from frequency responses and review capabilities and limitations of simulation tools. Emphasizing standards, this book is a clear and concise presentation of key aspects in creating an adequate and reliable transient model.


Transient Analysis of Electric Power Circuits Handbook

Transient Analysis of Electric Power Circuits Handbook

Author: Arieh L. Shenkman

Publisher: Springer Science & Business Media

Published: 2006-01-16

Total Pages: 576

ISBN-13: 038728799X

DOWNLOAD EBOOK

Every now and then, a good book comes along and quite rightfully makes itself a distinguished place amongthe existing books of the electric power engineering literature. This book by Professor Arieh Shenkman is one of them. Today, there are many excellent textbooks dealing with topics in power systems. Some of them are considered to be classics. However, many of them do not particularly address, nor concentrate on, topics dealing with transient analysis of electrical power systems. Many of the fundamental facts concerning the transient behavior of electric circuits were well explored by Steinmetz and other early pioneers of electrical power engineering. Among others, Electrical Transients in Power Systems by Allan Greenwood is worth mentioning. Even though basic knowledge of tr- sients may not have advanced in recent years at the same rate as before, there has been a tremendous proliferation in the techniques used to study transients. Theapplicationofcomputerstothestudyoftransientphenomenahasincreased both the knowledge as well as the accuracy of calculations. Furthermore, the importance of transients in power systems is receiving more and more attention in recent years as a result of various blackouts, brownouts, and recent collapses of some large power systems in the United States, and other parts of the world. As electric power consumption grows exponentially due to increasing population, modernization, and industrialization of the so-called third world, this topic will be even more important in the future than it is at the present time.


Power Systems Handbook - Four Volume Set

Power Systems Handbook - Four Volume Set

Author: J. C. Das

Publisher:

Published: 2017-10-15

Total Pages: 0

ISBN-13: 9781498745369

DOWNLOAD EBOOK

This handbook on power systems consists of a set of 4 volumes. They are carefully planned and designed to provide state of art material on major aspects of electrical power systems, short-circuit currents, load flow, harmonics and protective relaying. The material is organized with sound theoretical base, practical applications, and case studies.


Current Interruption Transients Calculation

Current Interruption Transients Calculation

Author: David F. Peelo

Publisher: John Wiley & Sons

Published: 2020-04-06

Total Pages: 309

ISBN-13: 1119547210

DOWNLOAD EBOOK

Provides an original, detailed, and practical description of current interruption transients, origins, and the circuits involved, and shows how they can be calculated Based on a course that has been presented by the author worldwide, this book teaches readers all about interruption transients calculation—showing how they can be calculated using only a hand calculator and Excel. It covers all the current interruption cases that occur on a power system and relates oscillatory circuit (transients) and symmetrical component theory to the practical calculation of current interruption transients as applied to circuit breaker application. The book explains all cases first in theory, and then illustrates them with practical examples. Topics featured in Current Interruption Transients Calculation, Second Edition include: RLC Circuits; Pole Factor Calculation; Terminal Faults; Short Line Faults; Inductive Load Switching; and Capacitive Load Switching. The book also features numerous appendices that cover: Differential Equations; Principle of Duality; Useful Formulae; Euler’s Formula; Asymmetrical Current-Calculating Areas Under Curves; Shunt Reactor Switching; and Generator Circuit Breaker TRVs. Offers a clear explanation of how to calculate transients without the use of specialist software, showing how four basic circuits can represent all transients Describes every possible current interruption case that can arise on a power system, explaining them through theory and practical examples Analyses oscillatory circuit (transients) and symmetrical component theory in detail Takes a practical approach to the subject so engineers can use the knowledge in circuit breaker applications Current Interruption Transients Calculation, Second Edition is an ideal book for power electrical engineers, as well as transmission and distribution staff in the areas of planning and system studies, switchgear application, specification and testing, and commissioning and system operation.


Electrical Transients in Power Systems

Electrical Transients in Power Systems

Author: Allan Greenwood

Publisher: Wiley-Interscience

Published: 1991-04-18

Total Pages: 778

ISBN-13:

DOWNLOAD EBOOK

The principles of the First Edition--to teach students and engineers the fundamentals of electrical transients and equip them with the skills to recognize and solve transient problems in power networks and components--also guide this Second Edition. While the text continues to stress the physical aspects of the phenomena involved in these problems, it also broadens and updates the computational treatment of transients. Necessarily, two new chapters address the subject of modeling and models for most types of equipment are discussed. The adequacy of the models, their validation and the relationship between model and the physical entity it represents are also examined. There are now chapters devoted entirely to isolation coordination and protection, reflecting the revolution that metal oxide surge arresters have caused in the power industry. Features additional and more complete illustrative material--figures, diagrams and worked examples. An entirely new chapter of case studies demonstrates modeling and computational techniques as they have been applied by engineers to specific problems.


Power System Analysis

Power System Analysis

Author: J.C. Das

Publisher: CRC Press

Published: 2002-04-17

Total Pages: 880

ISBN-13: 9780203908952

DOWNLOAD EBOOK

Featuring extensive calculations and examples, this reference discusses theoretical and practical aspects of short-circuit currents in ac and dc systems, load flow, and harmonic analyses to provide a sound knowledge base for modern computer-based studies that can be utilized in real-world applications. Presenting more than 2300 figures, tables, and


Synchronous Generators

Synchronous Generators

Author: Ion Boldea

Publisher: CRC Press

Published: 2015-09-03

Total Pages: 487

ISBN-13: 1498723551

DOWNLOAD EBOOK

Synchronous Generators, the first of two volumes in the Electric Generators Handbook, offers a thorough introduction to electrical energy and electricity generation, including the basic principles of electric generators. The book devotes a chapter to the most representative prime mover models for transients used in active control of various generators. Then, individual chapters explore large- and medium-power synchronous generator topologies, steady state, modeling, transients, control, design, and testing. Numerous case studies, worked-out examples, sample results, and illustrations highlight the concepts. Fully revised and updated to reflect the last decade’s worth of progress in the field, this Second Edition adds new sections that: Discuss high-power wind generators with fewer or no permanent magnets (PMs) Cover PM-assisted DC-excited salient pole synchronous generators Present multiphase synchronous machine inductances via the winding function method Consider the control of autonomous synchronous generators Examine additional optimization design issues Illustrate the optimal design of a large wind generator by the Hooke–Jeeves method Detail the magnetic equivalent circuit population-based optimal design of synchronous generators Address online identification of synchronous generator parameters Explain the small-signal injection online technique Explore line switching (on or off) parameter identification for isolated grids Describe synthetic back-to-back load testing with inverter supply The promise of renewable, sustainable energy rests on our ability to design innovative power systems that are able to harness energy from a variety of sources. Synchronous Generators, Second Edition supplies state-of-the-art tools necessary to design, validate, and deploy the right power generation technologies to fulfill tomorrow's complex energy needs.