Linear Algebra Done Right

Linear Algebra Done Right

Author: Sheldon Axler

Publisher: Springer Science & Business Media

Published: 1997-07-18

Total Pages: 276

ISBN-13: 9780387982595

DOWNLOAD EBOOK

This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.


Measure, Integration & Real Analysis

Measure, Integration & Real Analysis

Author: Sheldon Axler

Publisher: Springer Nature

Published: 2019-11-29

Total Pages: 430

ISBN-13: 3030331431

DOWNLOAD EBOOK

This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/


Algebra and Trigonometry

Algebra and Trigonometry

Author: Sheldon Axler

Publisher: John Wiley & Sons

Published: 2011-03-08

Total Pages: 784

ISBN-13: 047058579X

DOWNLOAD EBOOK

Axler Algebra & Trigonometry is written for the two semester course. The text provides students with the skill and understanding needed for their coursework and for participating as an educated citizen in a complex society. Axler Algebra & Trigonometry focuses on depth, not breadth of topics by exploring necessary topics in greater detail. Readers will benefit from the straightforward definitions and plentiful examples of complex concepts. The Student Solutions Manual is integrated at the end of every section. The proximity of the solutions encourages students to go back and read the main text as they are working through the problems and exercises. The inclusion of the manual also saves students money. Axler Algebra & Trigonometry is available with WileyPLUS; an innovative, research-based, online environment for effective teaching and learning. WileyPLUS sold separately from text.


College Algebra, Binder Ready Version

College Algebra, Binder Ready Version

Author: Sheldon Axler

Publisher: Wiley

Published: 2017-05-22

Total Pages: 528

ISBN-13: 9780470470787

DOWNLOAD EBOOK

College Algebra, First Edition will appeal to those who want to give important topics more in-depth, higher-level coverage. This text offers streamlined approach accompanied with accessible definitions across all chapters to allow for an easy-to-understand read. College Algebra contains prose that is precise, accurate, and easy to read, with straightforward definitions of even the topics that are typically most difficult for students.


Precalculus

Precalculus

Author: Sheldon Axler

Publisher: John Wiley & Sons

Published: 2017-08-21

Total Pages: 577

ISBN-13: 1119443334

DOWNLOAD EBOOK

Sheldon Axler's Precalculus: A Prelude to Calculus, 3rd Edition focuses only on topics that students actually need to succeed in calculus. This book is geared towards courses with intermediate algebra prerequisites and it does not assume that students remember any trigonometry. It covers topics such as inverse functions, logarithms, half-life and exponential growth, area, e, the exponential function, the natural logarithm and trigonometry.


Functions, Data and Models

Functions, Data and Models

Author: Sheldon P. Gordon

Publisher: MAA

Published: 2010

Total Pages: 511

ISBN-13: 0883857677

DOWNLOAD EBOOK

Focuses primarily on mathematical concepts and mathematical thinking, thereby achieving a balance among geometric, numerical, symbolic, and statistical approaches, rather than focusing on algebraic manipulation. Gordon incorporates a significant amount of statistical reasoning and methods as natural applications of more standard college algebra topics. --From publisher description.


Mirror Symmetry and Algebraic Geometry

Mirror Symmetry and Algebraic Geometry

Author: David A. Cox

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 498

ISBN-13: 082182127X

DOWNLOAD EBOOK

Mirror symmetry began when theoretical physicists made some astonishing predictions about rational curves on quintic hypersurfaces in four-dimensional projective space. Understanding the mathematics behind these predictions has been a substantial challenge. This book is the first completely comprehensive monograph on mirror symmetry, covering the original observations by the physicists through the most recent progress made to date. Subjects discussed include toric varieties, Hodge theory, Kahler geometry, moduli of stable maps, Calabi-Yau manifolds, quantum cohomology, Gromov-Witten invariants, and the mirror theorem. This title features: numerous examples worked out in detail; an appendix on mathematical physics; an exposition of the algebraic theory of Gromov-Witten invariants and quantum cohomology; and, a proof of the mirror theorem for the quintic threefold.


Enumerative Geometry and String Theory

Enumerative Geometry and String Theory

Author: Sheldon Katz

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 226

ISBN-13: 0821836870

DOWNLOAD EBOOK

Perhaps the most famous example of how ideas from modern physics have revolutionized mathematics is the way string theory has led to an overhaul of enumerative geometry, an area of mathematics that started in the eighteen hundreds. Century-old problems of enumerating geometric configurations have now been solved using new and deep mathematical techniques inspired by physics! The book begins with an insightful introduction to enumerative geometry. From there, the goal becomes explaining the more advanced elements of enumerative algebraic geometry. Along the way, there are some crash courses on intermediate topics which are essential tools for the student of modern mathematics, such as cohomology and other topics in geometry. The physics content assumes nothing beyond a first undergraduate course. The focus is on explaining the action principle in physics, the idea of string theory, and how these directly lead to questions in geometry. Once these topics are in place, the connection between physics and enumerative geometry is made with the introduction of topological quantum field theory and quantum cohomology.