Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.
This book gives a general view of sequence analysis, the statistical study of successions of states or events. It includes innovative contributions on life course studies, transitions into and out of employment, contemporaneous and historical careers, and political trajectories. The approach presented in this book is now central to the life-course perspective and the study of social processes more generally. This volume promotes the dialogue between approaches to sequence analysis that developed separately, within traditions contrasted in space and disciplines. It includes the latest developments in sequential concepts, coding, atypical datasets and time patterns, optimal matching and alternative algorithms, survey optimization, and visualization. Field studies include original sequential material related to parenting in 19th-century Belgium, higher education and work in Finland and Italy, family formation before and after German reunification, French Jews persecuted in occupied France, long-term trends in electoral participation, and regime democratization. Overall the book reassesses the classical uses of sequences and it promotes new ways of collecting, formatting, representing and processing them. The introduction provides basic sequential concepts and tools, as well as a history of the method. Chapters are presented in a way that is both accessible to the beginner and informative to the expert.
This open access book provides innovative methods and original applications of sequence analysis (SA) and related methods for analysing longitudinal data describing life trajectories such as professional careers, family paths, the succession of health statuses, or the time use. The applications as well as the methodological contributions proposed in this book pay special attention to the combined use of SA and other methods for longitudinal data such as event history analysis, Markov modelling, and sequence network. The methodological contributions in this book include among others original propositions for measuring the precarity of work trajectories, Markov-based methods for clustering sequences, fuzzy and monothetic clustering of sequences, network-based SA, joint use of SA and hidden Markov models, and of SA and survival models. The applications cover the comparison of gendered occupational trajectories in Germany, the study of the changes in women market participation in Denmark, the study of typical day of dual-earner couples in Italy, of mobility patterns in Togo, of internet addiction in Switzerland, and of the quality of employment career after a first unemployment spell. As such this book provides a wealth of information for social scientists interested in quantitative life course analysis, and all those working in sociology, demography, economics, health, psychology, social policy, and statistics.; Provides new perspectives and methods for sequence analysis Focusses on the link between sequence analysis and other methods for longitudinal data, especially event history analysis and Markov models Stresses the complementarity of sequence analysis and other models for longitudinal data Applications of sequence analysis in a whole range of different domains This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.
Sequence - Evolution - Function is an introduction to the computational approaches that play a critical role in the emerging new branch of biology known as functional genomics. The book provides the reader with an understanding of the principles and approaches of functional genomics and of the potential and limitations of computational and experimental approaches to genome analysis. Sequence - Evolution - Function should help bridge the "digital divide" between biologists and computer scientists, allowing biologists to better grasp the peculiarities of the emerging field of Genome Biology and to learn how to benefit from the enormous amount of sequence data available in the public databases. The book is non-technical with respect to the computer methods for genome analysis and discusses these methods from the user's viewpoint, without addressing mathematical and algorithmic details. Prior practical familiarity with the basic methods for sequence analysis is a major advantage, but a reader without such experience will be able to use the book as an introduction to these methods. This book is perfect for introductory level courses in computational methods for comparative and functional genomics.
This book is the first of its kind to provide a large collection of bioinformatics problems with accompanying solutions. Notably, the problem set includes all of the problems offered in Biological Sequence Analysis, by Durbin et al. (Cambridge, 1998), widely adopted as a required text for bioinformatics courses at leading universities worldwide. Although many of the problems included in Biological Sequence Analysis as exercises for its readers have been repeatedly used for homework and tests, no detailed solutions for the problems were available. Bioinformatics instructors had therefore frequently expressed a need for fully worked solutions and a larger set of problems for use on courses. This book provides just that: following the same structure as Biological Sequence Analysis and significantly extending the set of workable problems, it will facilitate a better understanding of the contents of the chapters in BSA and will help its readers develop problem-solving skills that are vitally important for conducting successful research in the growing field of bioinformatics. All of the material has been class-tested by the authors at Georgia Tech, where the first ever MSc degree program in Bioinformatics was held.
Social sequence analysis includes a diverse and rapidly growing body of methods that social scientists have developed to help study complex ordered social processes, including chains of transitions, trajectories and other ordered phenomena. Social sequence analysis is not limited by content or time scale and can be used in many different fields, including sociology, communication, information science and psychology. Social Sequence Analysis aims to bring together both foundational and recent theoretical and methodological work on social sequences from the last thirty years. A unique reference book for a new generation of social scientists, this book will aid demographers who study life-course trajectories and family histories, sociologists who study career paths or work/family schedules, communication scholars and micro-sociologists who study conversation, interaction structures and small-group dynamics, as well as social epidemiologists.
Sequence analysis (SA) was developed to study social processes that unfold over time as sequences of events. It has gained increasing attention as the availability of longitudinal data made it possible to address sequence-oriented questions. This volume introduces the basics of SA to guide practitioners and support instructors through the basic workflow of sequence analysis. In addition to the basics, this book outlines recent advances and innovations in SA. The presentation of statistical, substantive, and theoretical foundations is enriched by examples to help the reader understand the repercussions of specific analytical choices. The extensive ancillary material supports self-learning based on real-world survey data and research questions from the field of life course research. Data and code and a variety of additional resources to enrich the use of this book are available on an accompanying website.
Sequence data--either lists of nucleotides or of amino acids--are now easily gathered using automated equipment; the real effort is involved in interpreting the data to produce predictions of protein structure or function. With the advent of worldwide computer networks, a plethora of software is now available for sequence analysis. This book describes the techniques for computer analysis of sequence data, with the emphasis on general issues rather than specific algorithms. Unlike many books on these topics, which focus on the "how-to" aspects of software packages, this one places more emphasis on the science behind the packages and on interpretation of the results.
The recent accumulation of information from genomes, including their sequences, has resultednotonlyinnewattemptstoansweroldquestionsandsolvelongstandingissues inbiology,butalsointheformulationofnovelhypothesesthatarisepreciselyfromthis wealth of data. The storage, processing, description, transmission, connection, and analysis of these data has prompted bioinformatics to become one the most relevant applied sciences for this new century, walking hand-in-hand with modern molecular biology and clearly impacting areas like biotechnology and biomedicine. Bioinformatics skills have now become essential for many scientists working with DNA sequences. With this idea in mind, this book aims to provide practical guidance andtroubleshootingadviceforthecomputationalanalysisofDNAsequences,covering a range of issues and methods that unveil the multitude of applications and relevance that Bioinformatics has today. The analysis of protein sequences has been purposely excludedtogainfocus.Individualbookchaptersareorientedtowardthedescriptionof theuseofspecificbioinformaticstools,accompaniedbypracticalexamples,adiscussion on the interpretation of results, and specific comments on strengths and limitations of the methods and tools. In a sense, chapters could be seen as enriched task-oriented manuals that will direct the reader in completing specific bioinformatics analyses. The target audience for this book is biochemists, and molecular and evolutionary biologiststhatwanttolearnhowtoanalyzeDNAsequencesinasimplebutmeaningful fashion. Readers do not need a special background in statistics, mathematics, or computer science, just a basic knowledge of molecular biology and genetics. All the tools described in the book are free and all of them can be downloaded or accessed throughtheweb.Mostchapterscouldbeusedforpracticaladvancedundergraduateor graduate-level courses in bioinformatics and molecular evolution.