Separation Process Technology

Separation Process Technology

Author: Jimmy L. Humphrey

Publisher: McGraw-Hill Professional Publishing

Published: 1997

Total Pages: 440

ISBN-13:

DOWNLOAD EBOOK

Separation Process Technology is a comprehensive guide to the fundamentals, selection, applications, and installation methods of innovative separation technologies.


Handbook of Separation Process Technology

Handbook of Separation Process Technology

Author: Ronald W. Rousseau

Publisher: John Wiley & Sons

Published: 1987-05-13

Total Pages: 1028

ISBN-13: 9780471895589

DOWNLOAD EBOOK

Surveys the selection, design, and operation of most of the industrially important separation processes. Discusses the underlying principles on which the processes are based, and provides illustrative examples of the use of the processes in a modern context. Features thorough treatment of newer separation processes based on membranes, adsorption, chromatography, ion exchange, and chemical complexation. Includes a review of historically important separation processes such as distillation, absorption, extraction, leaching, and crystallization and considers these techniques in light of recent developments affecting them.


Boron Separation Processes

Boron Separation Processes

Author: Nalan Kabay

Publisher: Elsevier

Published: 2015-01-19

Total Pages: 405

ISBN-13: 0444634657

DOWNLOAD EBOOK

The impending crisis posed by water stress and poor sanitation represents one of greatest human challenges for the 21st century, and membrane technology has emerged as a serious contender to confront the crisis. Yet, whilst there are countless texts on wastewater treatment and on membrane technologies, none address the boron problem and separation processes for boron elimination. Boron Separation Processes fills this gap and provides a unique and single source that highlights the growing and competitive importance of these processes. For the first time, the reader is able to see in one reference work the state-of-the-art research in this rapidly growing field. The book focuses on four main areas: - Effect of boron on humans and plants - Separation of boron by ion exchange and adsorption processes - Separation of boron by membrane processes - Simulation and optimization studies for boron separation - Provides in one source a state-of-the-art overview of this compelling area - Reviews the environmental impact of boron before introducing emerging boron separation processes - Includes simulation and optimization studies for boron separation processes - Describes boron separation processes applicable to specific sources, such as seawater, geothermal water and wastewater


Industrial Separation Processes

Industrial Separation Processes

Author: André B. de Haan

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2020-07-06

Total Pages: 454

ISBN-13: 3110654806

DOWNLOAD EBOOK

Separation processes on an industrial scale account for well over half of the capital and operating costs in the chemical industry. Knowledge of these processes is key for every student of chemical or process engineering. This book is ideally suited to university teaching, thanks to its wealth of exercises and solutions. The second edition boasts an even greater number of applied examples and case studies as well as references for further reading.


Separation Technologies for the Industries of the Future

Separation Technologies for the Industries of the Future

Author: Panel on Separation Technology for Industrial Reuse and Recycling

Publisher: National Academies Press

Published: 1999-01-22

Total Pages: 128

ISBN-13: 0309592828

DOWNLOAD EBOOK

Separation processes—or processes that use physical, chemical, or electrical forces to isolate or concentrate selected constituents of a mixture—are essential to the chemical, petroleum refining, and materials processing industries. In this volume, an expert panel reviews the separation process needs of seven industries and identifies technologies that hold promise for meeting these needs, as well as key technologies that could enable separations. In addition, the book recommends criteria for the selection of separations research projects for the Department of Energy's Office of Industrial Technology.


Thermal Separation Technology

Thermal Separation Technology

Author: Alfons Mersmann

Publisher: Springer Science & Business Media

Published: 2011-07-28

Total Pages: 690

ISBN-13: 3642125255

DOWNLOAD EBOOK

Thermal Separation Technology is a key discipline for many industries and lays the engineering foundations for the sustainable and economic production of high-quality materials. This book provides fundamental knowledge on this field and may be used both in university teaching and in industrial research and development. Furthermore, it is intended to support professional engineers in their daily efforts to improve plant efficiency and reliability. Previous German editions of this book have gained widespread recognition. This first English edition will now make its content available to the international community of students and professionals. In the first chapters of the book the fundamentals of thermodynamics, heat and mass transfer, and multiphase flow are addressed. Further chapters examine in depth the different unit operations distillation and absorption, extraction, evaporation and condensation, crystallization, adsorption and chromatography, and drying, while the closing chapter provides valuable guidelines for a conceptual process development.


MEMBRANE SEPARATION PROCESSES

MEMBRANE SEPARATION PROCESSES

Author: KAUSHIK NATH

Publisher: PHI Learning Pvt. Ltd.

Published: 2017-01-01

Total Pages: 361

ISBN-13: 8120352912

DOWNLOAD EBOOK

This concise and systematically organized text, now in its second edition, gives a clear insight into various membrane separation processes. It covers the fundamentals as well as the recent developments of different processes along with their industrial applications and the products. It includes the basic principles, operating parameters, membrane hardware, flux equation, transport mechanism, and applications of membrane-based technologies. Membrane separation processes are largely rate-controlled separations which require rate analysis for complete understanding. Moreover, a higher level of mathematical analysis, along with the understanding of mass transfer, is also required. These are amply treated in different chapters of the book to make the students comprehend the membrane separation principles with ease. This textbook is primarily designed for undergraduate students of chemical engineering, biochemical engineering and biotechnology for the course in membrane separation processes. Besides, the book will also be useful to process engineers and researchers. KEY FEATURES • Provides sufficient number of examples of industrial applications related to chemical, metallurgical, biochemical and food processing industries. • Focuses on important biomedical applications of membrane-based technologies such as blood oxygenator, controlled drug delivery, plasmapheresis, and bioartificial organs. • Includes chapter-end short questions and problems to test students’ comprehension of the subject. NEW TO THIS EDITION • A new section on membrane cleaning is included. Membrane fabrication methods are supplemented with additional information (Chapter 2). • Additional information on silt density index, forward osmosis and sea water desalination (Chapter 3). • Physicochemical parameters affecting nanofiltration, determination of various resistances using resistance in series model and few more industrial applications with additional short questions (Chapter 4). • Membrane cross-linking methods used in pervaporation, factors affecting pervaporation and few more applications (Chapter 9). • Membrane distillation, membrane reactor with different modules, types of membranes and reactions for membrane reactor (Chapter 13).


Ion-Exchange Membrane Separation Processes

Ion-Exchange Membrane Separation Processes

Author: H Strathmann

Publisher: Elsevier

Published: 2004-01-29

Total Pages: 361

ISBN-13: 0080509401

DOWNLOAD EBOOK

Today, membranes and membrane processes are used as efficient tools for the separation of liquid mixtures or gases in the chemical and biomedical industry, in water desalination and wastewater purification. Despite the fact that various membrane processes, like reverse osmosis, are described in great detail in a number of books, processes involving ion-exchange membranes are only described in a fragmented way in scientific journals and patents; even though large industrial applications, like electrodialysis, have been around for over half a century. Therefore, this book is emphasizing on the most relevant aspects of ion-exchange membranes. This book provides a comprehensive overview of ion-exchange membrane separation processes covering the fundamentals as well as recent developments of the different products and processes and their applications. The audience for this book is heterogeneous, as it includes plant managers and process engineers as well as research scientists and graduate students. The separate chapters are based on different topics. The first chapter describes the relevant Electromembrane processes in a general overview. The second chapter explains thermodynamic and physicochemical fundamentals. The third chapter gives information about ion-exchange membrane preparation techniques, while the fourth and fifth chapter discusses the processes as unit operations giving examples for the design of specific plants. - First work on the principles and applications of electrodialysis and related separation processes - Presently no other comprehensive work that can serve as both reference work and text book is available - Book is suited for teaching students and as source for detailed information


Separation Process Essentials

Separation Process Essentials

Author: Alan M. Lane

Publisher: CRC Press

Published: 2019-11-07

Total Pages: 393

ISBN-13: 135161813X

DOWNLOAD EBOOK

Separation Process Essentials provides an interactive approach for students to learn the main separation processes (distillation, absorption, stripping, and solvent extraction) using material and energy balances with equilibrium relationships, while referring readers to other more complete works when needed. Membrane separations are included as an example of non-equilibrium processes. This book reviews and builds on material learned in the first chemical engineering courses such as Material and Energy Balances and Thermodynamics as applied to separations. It relies heavily on example problems, including completely worked and explained problems followed by "Try This At Home" guided examples. Most examples have accompanying downloadable Excel spreadsheet simulations. The book also offers a complementary website, http://separationsbook.com, with supplementary material such as links to YouTube tutorials, practice problems, and the Excel simulations. This book is aimed at second and third year undergraduate students in Chemical engineering, as well as professionals in the field of Chemical engineering, and can be used for a one semester course in separation processes and unit operations.


Industrial Membrane Separation Technology

Industrial Membrane Separation Technology

Author: K. Scott

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 317

ISBN-13: 9401106274

DOWNLOAD EBOOK

Membrane science and technology is an expanding field and has become a prominent part of many activities within the process industries. It is relatively easy to identify the success stories of membranes such as desali nation and microfiltration and to refer to others as developing areas. This, however, does not do justice to the wide field of separations in which membranes are used. No other 'single' process offers the same potential and versatility as that of membranes. The word separation classically conjures up a model of removing one component or species from a second component, for example a mass transfer process such as distillation. In the field of synthetic membranes, the terminology 'separation' is used in a wider context. A range of separations of the chemical/mass transfer type have developed around the use of membranes including distillation, extraction, absorption, adsorption and stripping, as well as separations of the physical type such as filtration. Synthetic membranes are an integral part of devices for analysis, energy generation and reactors (cells) in the electrochemical industry.