Separable Optimization

Separable Optimization

Author: Stefan M. Stefanov

Publisher: Springer Nature

Published: 2022-01-01

Total Pages: 360

ISBN-13: 3030784010

DOWNLOAD EBOOK

In this book, the theory, methods and applications of separable optimization are considered. Some general results are presented, techniques of approximating the separable problem by linear programming problem, and dynamic programming are also studied. Convex separable programs subject to inequality/ equality constraint(s) and bounds on variables are also studied and convergent iterative algorithms of polynomial complexity are proposed. As an application, these algorithms are used in the implementation of stochastic quasigradient methods to some separable stochastic programs. The problems of numerical approximation of tabulated functions and numerical solution of overdetermined systems of linear algebraic equations and some systems of nonlinear equations are solved by separable convex unconstrained minimization problems. Some properties of the Knapsack polytope are also studied. This second edition includes a substantial amount of new and revised content. Three new chapters, 15-17, are included. Chapters 15-16 are devoted to the further analysis of the Knapsack problem. Chapter 17 is focused on the analysis of a nonlinear transportation problem. Three new Appendices (E-G) are also added to this edition and present technical details that help round out the coverage. Optimization problems and methods for solving the problems considered are interesting not only from the viewpoint of optimization theory, optimization methods and their applications, but also from the viewpoint of other fields of science, especially the artificial intelligence and machine learning fields within computer science. This book is intended for the researcher, practitioner, or engineer who is interested in the detailed treatment of separable programming and wants to take advantage of the latest theoretical and algorithmic results. It may also be used as a textbook for a special topics course or as a supplementary textbook for graduate courses on nonlinear and convex optimization.


Separable Programming

Separable Programming

Author: S.M. Stefanov

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 323

ISBN-13: 1475734174

DOWNLOAD EBOOK

In this book, the author considers separable programming and, in particular, one of its important cases - convex separable programming. Some general results are presented, techniques of approximating the separable problem by linear programming and dynamic programming are considered. Convex separable programs subject to inequality/ equality constraint(s) and bounds on variables are also studied and iterative algorithms of polynomial complexity are proposed. As an application, these algorithms are used in the implementation of stochastic quasigradient methods to some separable stochastic programs. Numerical approximation with respect to I1 and I4 norms, as a convex separable nonsmooth unconstrained minimization problem, is considered as well. Audience: Advanced undergraduate and graduate students, mathematical programming/ operations research specialists.


Integer Programming and Combinatorial Optimization

Integer Programming and Combinatorial Optimization

Author: George Nemhauser

Publisher: Springer

Published: 2004-07-27

Total Pages: 453

ISBN-13: 3540259600

DOWNLOAD EBOOK

This volume contains the papers accepted for publication at IPCO X, the Tenth International Conference on Integer Programming and Combinatorial Optimization, held in New York City, New York, USA, June 7-11, 2004. The IPCO series of conferences presents recent results in theory, computation and applications of integer programming and combinatorial optimization. These conferences are sponsored by the Mathematical Programming Society, and are held in those years in which no International Symposium on Mathematical Programming takes place. IPCO VIII was held in Utrecht (The Netherlands) and IPCO IX was held in Cambridge (USA). A total of 109 abstracts, mostly of very high quality, were submitted. The Program Committee accepted 32, in order to meet the goal of having three days of talks with no parallel sessions. Thus, many excellent abstracts could not be accepted. The papers in this volume have not been refereed. It is expected that revised versions of the accepted papers will be submitted to standard scientific journals for publication. The Program Committee thanks all authors of submitted manuscripts for their support of IPCO. March 2004 George Nemhauser Daniel Bienstock Organization IPCO X was hosted by the Computational Optimization Research Center (CORC), Columbia University.


Nonlinear Equations and Optimisation

Nonlinear Equations and Optimisation

Author: L.T. Watson

Publisher: Gulf Professional Publishing

Published: 2001-03-28

Total Pages: 392

ISBN-13: 9780444505996

DOWNLOAD EBOOK

After a review of historical developments in convergence analysis for Newton's and Newton-like methods, 18 papers deal in depth with various classical, or neo-classical approaches, as well as newer ideas on optimization and solving linear equations. A sampling of topics: truncated Newton methods, sequential quadratic programming for large- scale nonlinear optimization, and automatic differentiation of algorithms. This monograph, one of seven volumes in the set, is also published as the Journal of Computational and Applied Mathematics; v.124 (2000). Indexed only by author. c. Book News Inc.


Evolutionary Multi-Criterion Optimization

Evolutionary Multi-Criterion Optimization

Author: Carlos A. Coello Coello

Publisher: Springer Science & Business Media

Published: 2005-02-17

Total Pages: 927

ISBN-13: 3540249834

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization, EMO 2005, held in Guanajuato, Mexico, in March 2005. The 59 revised full papers presented together with 2 invited papers and the summary of a tutorial were carefully reviewed and selected from the 115 papers submitted. The papers are organized in topical sections on algorithm improvements, incorporation of preferences, performance analysis and comparison, uncertainty and noise, alternative methods, and applications in a broad variety of fields.


Integer Programming and Combinatorial Optimization

Integer Programming and Combinatorial Optimization

Author: Gerard Cornuejols

Publisher: Springer

Published: 2007-03-05

Total Pages: 463

ISBN-13: 3540487778

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 7th International Conference on Integer Programming and Combinatorial Optimization, IPCO'99, held in Graz, Austria, in June 1999. The 33 revised full papers presented were carefully reviewed and selected from a total of 99 submissions. Among the topics addressed are theoretical, computational, and application-oriented aspects of approximation algorithms, branch and bound algorithms, computational biology, computational complexity, computational geometry, cutting plane algorithms, diaphantine equations, geometry of numbers, graph and network algorithms, online algorithms, polyhedral combinatorics, scheduling, and semidefinite programs.


Handbook on Semidefinite, Conic and Polynomial Optimization

Handbook on Semidefinite, Conic and Polynomial Optimization

Author: Miguel F. Anjos

Publisher: Springer Science & Business Media

Published: 2011-11-19

Total Pages: 955

ISBN-13: 1461407699

DOWNLOAD EBOOK

Semidefinite and conic optimization is a major and thriving research area within the optimization community. Although semidefinite optimization has been studied (under different names) since at least the 1940s, its importance grew immensely during the 1990s after polynomial-time interior-point methods for linear optimization were extended to solve semidefinite optimization problems. Since the beginning of the 21st century, not only has research into semidefinite and conic optimization continued unabated, but also a fruitful interaction has developed with algebraic geometry through the close connections between semidefinite matrices and polynomial optimization. This has brought about important new results and led to an even higher level of research activity. This Handbook on Semidefinite, Conic and Polynomial Optimization provides the reader with a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization, and polynomial optimization. It contains a compendium of the recent research activity that has taken place in these thrilling areas, and will appeal to doctoral students, young graduates, and experienced researchers alike. The Handbook’s thirty-one chapters are organized into four parts: Theory, covering significant theoretical developments as well as the interactions between conic optimization and polynomial optimization; Algorithms, documenting the directions of current algorithmic development; Software, providing an overview of the state-of-the-art; Applications, dealing with the application areas where semidefinite and conic optimization has made a significant impact in recent years.


Engineering Optimization

Engineering Optimization

Author: Singiresu S. Rao

Publisher: John Wiley & Sons

Published: 1996-02-29

Total Pages: 926

ISBN-13: 9780471550341

DOWNLOAD EBOOK

In Engineering Optimization, Professor Singiresu S. Rao provides an application-oriented presentation of the full array of classical and newly developed optimization techniques now being used by engineers in a wide range of industries.


Hierarchical Optimization and Mathematical Physics

Hierarchical Optimization and Mathematical Physics

Author: Vladimir Tsurkov

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 320

ISBN-13: 1461546672

DOWNLOAD EBOOK

This book should be considered as an introduction to a special dass of hierarchical systems of optimal control, where subsystems are described by partial differential equations of various types. Optimization is carried out by means of a two-level scheme, where the center optimizes coordination for the upper level and subsystems find the optimal solutions for independent local problems. The main algorithm is a method of iterative aggregation. The coordinator solves the problern with macrovariables, whose number is less than the number of initial variables. This problern is often very simple. On the lower level, we have the usual optimal control problems of math ematical physics, which are far simpler than the initial statements. Thus, the decomposition (or reduction to problems ofless dimensions) is obtained. The algorithm constructs a sequence of so-called disaggregated solutions that are feasible for the main problern and converge to its optimal solutionunder certain assumptions ( e.g., under strict convexity of the input functions). Thus, we bridge the gap between two disciplines: optimization theory of large-scale systems and mathematical physics. The first motivation was a special model of branch planning, where the final product obeys a preset assortment relation. The ratio coefficient is maximized. Constraints are given in the form of linear inequalities with block diagonal structure of the part of a matrix that corresponds to subsystems. The central coordinator assem bles the final production from the components produced by the subsystems.


Optimization for Learning and Control

Optimization for Learning and Control

Author: Anders Hansson

Publisher: John Wiley & Sons

Published: 2023-06-20

Total Pages: 436

ISBN-13: 1119809134

DOWNLOAD EBOOK

Optimization for Learning and Control Comprehensive resource providing a masters’ level introduction to optimization theory and algorithms for learning and control Optimization for Learning and Control describes how optimization is used in these domains, giving a thorough introduction to both unsupervised learning, supervised learning, and reinforcement learning, with an emphasis on optimization methods for large-scale learning and control problems. Several applications areas are also discussed, including signal processing, system identification, optimal control, and machine learning. Today, most of the material on the optimization aspects of deep learning that is accessible for students at a Masters’ level is focused on surface-level computer programming; deeper knowledge about the optimization methods and the trade-offs that are behind these methods is not provided. The objective of this book is to make this scattered knowledge, currently mainly available in publications in academic journals, accessible for Masters’ students in a coherent way. The focus is on basic algorithmic principles and trade-offs. Optimization for Learning and Control covers sample topics such as: Optimization theory and optimization methods, covering classes of optimization problems like least squares problems, quadratic problems, conic optimization problems and rank optimization. First-order methods, second-order methods, variable metric methods, and methods for nonlinear least squares problems. Stochastic optimization methods, augmented Lagrangian methods, interior-point methods, and conic optimization methods. Dynamic programming for solving optimal control problems and its generalization to reinforcement learning. How optimization theory is used to develop theory and tools of statistics and learning, e.g., the maximum likelihood method, expectation maximization, k-means clustering, and support vector machines. How calculus of variations is used in optimal control and for deriving the family of exponential distributions. Optimization for Learning and Control is an ideal resource on the subject for scientists and engineers learning about which optimization methods are useful for learning and control problems; the text will also appeal to industry professionals using machine learning for different practical applications.