This textbook provides a comprehensive introduction to the theories and techniques of multi-sensor data fusion. It is aimed at advanced undergraduate and first-year graduate students in electrical engineering and computer science, as well as researchers and professional engineers. The book is intended to be self-contained. No previous knowledge of multi-sensor data fusion is assumed, although some familiarity with the basic tools of linear algebra, calculus and simple probability theory is recommended.
Understand multi-sensor fusion--the most sophisticated way to deliver accurate real-world data to computer systems. Applications include aviation, medicine, military, manufacturing, and transportation. The Sensor Fusion Toolkit on disk contains C programs discussed in the book and supports each section.
This book illustrates the benefits of sensor fusion by considering the characteristics of infrared, microwave, and millimeter-wave sensors, including the influence of the atmosphere on their performance. Applications that benefit from this technology include: vehicular traffic management, remote sensing, target classification and tracking- weather forecasting- military and homeland defense. Covering data fusion algorithms in detail, Klein includes a summary of the information required to implement each of the algorithms discussed, and outlines system application scenarios that may limit sensor size but that require high resolution data.
Using MATLAB examples wherever possible, Multi-Sensor Data Fusion with MATLAB explores the three levels of multi-sensor data fusion (MSDF): kinematic-level fusion, including the theory of DF; fuzzy logic and decision fusion; and pixel- and feature-level image fusion. The authors elucidate DF strategies, algorithms, and performance evaluation mainly
This book includes papers from the section “Multisensor Information Fusion”, from Sensors between 2018 to 2019. It focuses on the latest research results of current multi-sensor fusion technologies and represents the latest research trends, including traditional information fusion technologies, estimation and filtering, and the latest research, artificial intelligence involving deep learning.
Sensor Data Fusion is the process of combining incomplete and imperfect pieces of mutually complementary sensor information in such a way that a better understanding of an underlying real-world phenomenon is achieved. Typically, this insight is either unobtainable otherwise or a fusion result exceeds what can be produced from a single sensor output in accuracy, reliability, or cost. This book provides an introduction Sensor Data Fusion, as an information technology as well as a branch of engineering science and informatics. Part I presents a coherent methodological framework, thus providing the prerequisites for discussing selected applications in Part II of the book. The presentation mirrors the author's views on the subject and emphasizes his own contributions to the development of particular aspects. With some delay, Sensor Data Fusion is likely to develop along lines similar to the evolution of another modern key technology whose origin is in the military domain, the Internet. It is the author's firm conviction that until now, scientists and engineers have only scratched the surface of the vast range of opportunities for research, engineering, and product development that still waits to be explored: the Internet of the Sensors.
Exciting new developments are enabling sensors to go beyond the realm of simple sensing of movement or capture of images to deliver information such as location in a built environment, the sense of touch, and the presence of chemicals. These sensors unlock the potential for smarter systems, allowing machines to interact with the world around them in more intelligent and sophisticated ways. Featuring contributions from authors working at the leading edge of sensor technology, Technologies for Smart Sensors and Sensor Fusion showcases the latest advancements in sensors with biotechnology, medical science, chemical detection, environmental monitoring, automotive, and industrial applications. This valuable reference describes the increasingly varied number of sensors that can be integrated into arrays, and examines the growing availability and computational power of communication devices that support the algorithms needed to reduce the raw sensor data from multiple sensors and convert it into the information needed by the sensor array to enable rapid transmission of the results to the required point. Using both SI and US units, the text: Provides a fundamental and analytical understanding of the underlying technology for smart sensors Discusses groundbreaking software and sensor systems as well as key issues surrounding sensor fusion Exemplifies the richness and diversity of development work in the world of smart sensors and sensor fusion Offering fresh insight into the sensors of the future, Technologies for Smart Sensors and Sensor Fusion not only exposes readers to trends but also inspires innovation in smart sensor and sensor system development.
Since the publication of the first edition of this book, advances in algorithms, logic and software tools have transformed the field of data fusion. The latest edition covers these areas as well as smart agents, human computer interaction, cognitive aides to analysis and data system fusion control. data fusion system, this book guides you through the process of determining the trade-offs among competing data fusion algorithms, selecting commercial off-the-shelf (COTS) tools, and understanding when data fusion improves systems processing. Completely new chapters in this second edition explain data fusion system control, DARPA's recently developed TRIP model, and the latest applications of data fusion in data warehousing and medical equipment, as well as defence systems.
The emerging technology of multisensor data fusion has a wide range of applications, both in Department of Defense (DoD) areas and in the civilian arena. The techniques of multisensor data fusion draw from an equally broad range of disciplines, including artificial intelligence, pattern recognition, and statistical estimation. With the rapid evolut