Biological systems are an emerging discipline that may provide integrative tools by assembling the hierarchy of interactions among genes, proteins and molecular networks involved in sensory systems. The aim of this volume is to provide a picture, as complete as possible, of the current state of knowledge of sensory systems in nature. The presentation in this book lies at the intersection of evolutionary biology, cell and molecular biology, physiology and genetics. Sensing in Nature is written by a distinguished panel of specialists and is intended to be read by biologists, students, scientific investigators and the medical community.
Biological sensors are usually remarkably small, sensitive and efficient. It is highly desirable to design corresponding artificial sensors for scientific, industrial and commercial purposes. This book is designed to fill an urgent need for interdisciplinary exchange between biologists studying sensors in the natural world and engineers and physical scientists developing artificial sensors. The main topics cover mechanical sensors, e.g. waves and sounds, visual sensors and vision and chemosensors. Readers will obtain a fuller understanding of the nature and performance of natural sensors as well as enhanced appreciation for the current status and the potential applicability of artificial microsensors.
Sensors are everywhere. Small, flexible, economical, and computationally powerful, they operate ubiquitously in environments. They compile massive amounts of data, including information about air, water, and climate. Never before has such a volume of environmental data been so broadly collected or so widely available. Grappling with the consequences of wiring our world, Program Earth examines how sensor technologies are programming our environments. As Jennifer Gabrys points out, sensors do not merely record information about an environment. Rather, they generate new environments and environmental relations. At the same time, they give a voice to the entities they monitor: to animals, plants, people, and inanimate objects. This book looks at the ways in which sensors converge with environments to map ecological processes, to track the migration of animals, to check pollutants, to facilitate citizen participation, and to program infrastructure. Through discussing particular instances where sensors are deployed for environmental study and citizen engagement across three areas of environmental sensing, from wild sensing to pollution sensing and urban sensing, Program Earth asks how sensor technologies specifically contribute to new environmental conditions. What are the implications for wiring up environments? How do sensor applications not only program environments, but also program the sorts of citizens and collectives we might become? Program Earth suggests that the sensor-based monitoring of Earth offers the prospect of making new environments not simply as an extension of the human but rather as new “technogeographies” that connect technology, nature, and people.
This book is a completely updated, greatly expanded version of the previously successful volume by the author. The Second Edition includes new results and data, and discusses a unified framework and rationale for designing and evaluating image processing algorithms.Written from the viewpoint that image processing supports remote sensing science, this book describes physical models for remote sensing phenomenology and sensors and how they contribute to models for remote-sensing data. The text then presents image processing techniques and interprets them in terms of these models. Spectral, spatial, and geometric models are used to introduce advanced image processing techniques such as hyperspectral image analysis, fusion of multisensor images, and digital elevationmodel extraction from stereo imagery.The material is suited for graduate level engineering, physical and natural science courses, or practicing remote sensing scientists. Each chapter is enhanced by student exercises designed to stimulate an understanding of the material. Over 300 figuresare produced specifically for this book, and numerous tables provide a rich bibliography of the research literature.
Sensors are the eyes, ears, and more, of the modern engineered product or system- including the living human organism. This authoritative reference work, part of Momentum Press's new Sensors Technology series, edited by noted sensors expert, Dr. Joe Watson, will offer a complete review of all sensors and their associated instrumentation systems now commonly used in modern medicine. Readers will find invaluable data and guidance on a wide variety of sensors used in biomedical applications, from fluid flow sensors, to pressure sensors, to chemical analysis sensors. New developments in biomaterials- based sensors that mimic natural bio-systems will be covered as well. Also featured will be ample references throughout, along with a useful Glossary and symbols list, as well as convenient conversion tables.
This book provides information on the Earth science remote sensing data information and data format such as HDF-EOS. It evaluates the current data processing approaches and introduces data searching and ordering from different public domains. It further explores the remote sensing and GIS migration products and WebGIS applications. Both volumes are designed to give an introduction to current and future NASA, NOAA and other Earth science remote sensing.
The ability to anticipate the impacts of global environmental changes on natural resources is fundamental to designing appropriate and optimised adaptation and mitigation strategies. However, this requires the scientific community to have access to reliable, large-scale information on spatio-temporal changes in the distribution of abiotic conditions and on the distribution, structure, composition, and functioning of ecosystems. Satellite remote sensing can provide access to some of this fundamental data by offering repeatable, standardised, and verifiable information that is directly relevant to the monitoring and management of our natural capital. This book demonstrates how ecological knowledge and satellite-based information can be effectively combined to address a wide array of current natural resource management needs. By focusing on concrete applied examples in both the marine and terrestrial realms, it will help pave the way for developing enhanced levels of collaboration between the ecological and remote sensing communities, as well as shaping their future research directions. Satellite Remote Sensing and the Management of Natural Resources is primarily aimed at ecologists and remote sensing specialists, as well as policy makers and practitioners in the fields of conservation biology, biodiversity monitoring, and natural resource management.
The most comprehensive description of the physical foundations of methods and instruments in the fields of passive remote sensing applied to investigations of the Earth, Solar system bodies and space. Emphasis is placed on the physical aspects necessary to judge the possibilities and limitations of passive remote sensing methods in specific observation cases. Numerous practical applications and illustrations are given referring to airspace up-to-date experiments. Due to the lack in traditional separation on methods and instruments of remote sensing of the Earth and outerterrestrial space this book aims to supply more information in this field.
This book provides an overview of modern sensing technologies and reflects the remarkable advances that have been made in the field of intelligent and smart sensors, environmental monitoring, health monitoring, and many other sensing and monitoring contexts in today’s world. It addresses a broad range of aspects, from human health monitoring to the monitoring of environmental conditions, from wireless sensor networks and the Internet of Things to structural health monitoring. Given its breadth of scope, the book will benefit researchers, practitioners, technologists and graduate students involved in the monitoring of systems within the human body, functions and activities, healthcare technologies and services, the environment, etc.
Fluorescence is the most popular technique in chemical and biological sensing and this book provides systematic knowledge of basic principles in the design of fluorescence sensing and imaging techniques together with critical analysis of recent developments. Its ultimate sensitivity, high temporal and spatial resolution and versatility enables high resolution imaging within living cells. It develops rapidly in the directions of constructing new molecular recognition units, new fluorescence reporters and in improving sensitivity of response, up to the detection of single molecules. Its application areas range from the control of industrial processes to environmental monitoring and clinical diagnostics. Being a guide for students and young researchers, it also addresses professionals involved in basic and applied research. Making a strong link between education, research and product development, this book discusses prospects for future progress.