Semilinear Schrodinger Equations

Semilinear Schrodinger Equations

Author: Thierry Cazenave

Publisher: American Mathematical Soc.

Published: 2003

Total Pages: 346

ISBN-13: 0821833995

DOWNLOAD EBOOK

The nonlinear Schrodinger equation has received a great deal of attention from mathematicians, particularly because of its applications to nonlinear optics. This book presents various mathematical aspects of the nonlinear Schrodinger equation. It studies both problems of local nature and problems of global nature.


Wigner Measure and Semiclassical Limits of Nonlinear Schrödinger Equations

Wigner Measure and Semiclassical Limits of Nonlinear Schrödinger Equations

Author: Ping Zhang

Publisher: American Mathematical Soc.

Published:

Total Pages: 212

ISBN-13: 9780821883563

DOWNLOAD EBOOK

"This book is based on a course entitled "Wigner measures and semiclassical limits of nonlinear Schrodinger equations," which the author taught at the Courant Institute of Mathematical Sciences at New York University in the spring of 2007. The author's main purpose is to apply the theory of semiclassical pseudodifferential operators to the study of various high-frequency limits of equations from quantum mechanics. In particular, the focus of attention is on Wigner measure and recent progress on how to use it as a tool to study various problems arising from semiclassical limits of Schrodinger-type equations." "At the end of each chapter, the reader will find references and remarks about recent progress on related problems. The book is self-contained and is suitable for an advanced graduate course on the topic."--BOOK JACKET.


Introduction to Nonlinear Dispersive Equations

Introduction to Nonlinear Dispersive Equations

Author: Felipe Linares

Publisher: Springer

Published: 2014-12-15

Total Pages: 308

ISBN-13: 1493921819

DOWNLOAD EBOOK

This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introduction to Nonlinear Dispersive Equations builds upon the success of the first edition by the addition of updated material on the main topics, an expanded bibliography, and new exercises. Assuming only basic knowledge of complex analysis and integration theory, this book will enable graduate students and researchers to enter this actively developing field.


The Nonlinear Schrödinger Equation

The Nonlinear Schrödinger Equation

Author: Catherine Sulem

Publisher: Springer Science & Business Media

Published: 2007-06-30

Total Pages: 363

ISBN-13: 0387227687

DOWNLOAD EBOOK

Filling the gap between the mathematical literature and applications to domains, the authors have chosen to address the problem of wave collapse by several methods ranging from rigorous mathematical analysis to formal aymptotic expansions and numerical simulations.


An Introduction to Semilinear Evolution Equations

An Introduction to Semilinear Evolution Equations

Author: Thierry Cazenave

Publisher: Oxford University Press

Published: 1998

Total Pages: 204

ISBN-13: 9780198502777

DOWNLOAD EBOOK

This book presents in a self-contained form the typical basic properties of solutions to semilinear evolutionary partial differential equations, with special emphasis on global properties. It has a didactic ambition and will be useful for an applied readership as well as theoretical researchers.


Semi-classical Analysis For Nonlinear Schrodinger Equations: Wkb Analysis, Focal Points, Coherent States (Second Edition)

Semi-classical Analysis For Nonlinear Schrodinger Equations: Wkb Analysis, Focal Points, Coherent States (Second Edition)

Author: Remi Carles

Publisher: World Scientific

Published: 2020-10-05

Total Pages: 367

ISBN-13: 9811227926

DOWNLOAD EBOOK

The second edition of this book consists of three parts. The first one is dedicated to the WKB methods and the semi-classical limit before the formation of caustics. The second part treats the semi-classical limit in the presence of caustics, in the special geometric case where the caustic is reduced to a point (or to several isolated points). The third part is new in this edition, and addresses the nonlinear propagation of coherent states. The three parts are essentially independent.Compared with the first edition, the first part is enriched by a new section on multiphase expansions in the case of weakly nonlinear geometric optics, and an application related to this study, concerning instability results for nonlinear Schrödinger equations in negative order Sobolev spaces.The third part is an overview of results concerning nonlinear effects in the propagation of coherent states, in the case of a power nonlinearity, and in the richer case of Hartree-like nonlinearities. It includes explicit formulas of an independent interest, such as generalized Mehler's formula, generalized lens transform.


Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations

Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations

Author: Victor A. Galaktionov

Publisher: CRC Press

Published: 2014-09-22

Total Pages: 565

ISBN-13: 1482251736

DOWNLOAD EBOOK

Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations shows how four types of higher-order nonlinear evolution partial differential equations (PDEs) have many commonalities through their special quasilinear degenerate representations. The authors present a unified approach to deal with these quasilinear PDEs.The book


Analysis, Probability, Applications, and Computation

Analysis, Probability, Applications, and Computation

Author: Karl‐Olof Lindahl

Publisher: Springer

Published: 2019-04-29

Total Pages: 540

ISBN-13: 3030044599

DOWNLOAD EBOOK

This book is a collection of short papers from the 11th International ISAAC Congress 2017 in Växjö, Sweden. The papers, written by the best international experts, are devoted to recent results in mathematics with a focus on analysis. The volume provides to both specialists and non-specialists an excellent source of information on the current research in mathematical analysis and its various interdisciplinary applications.


Defocusing Nonlinear Schrödinger Equations

Defocusing Nonlinear Schrödinger Equations

Author: Benjamin Dodson

Publisher: Cambridge University Press

Published: 2019-03-28

Total Pages: 256

ISBN-13: 1108681670

DOWNLOAD EBOOK

This study of Schrödinger equations with power-type nonlinearity provides a great deal of insight into other dispersive partial differential equations and geometric partial differential equations. It presents important proofs, using tools from harmonic analysis, microlocal analysis, functional analysis, and topology. This includes a new proof of Keel–Tao endpoint Strichartz estimates, and a new proof of Bourgain's result for radial, energy-critical NLS. It also provides a detailed presentation of scattering results for energy-critical and mass-critical equations. This book is suitable as the basis for a one-semester course, and serves as a useful introduction to nonlinear Schrödinger equations for those with a background in harmonic analysis, functional analysis, and partial differential equations.


Geometric Numerical Integration and Schrödinger Equations

Geometric Numerical Integration and Schrödinger Equations

Author: Erwan Faou

Publisher: European Mathematical Society

Published: 2012

Total Pages: 152

ISBN-13: 9783037191002

DOWNLOAD EBOOK

The goal of geometric numerical integration is the simulation of evolution equations possessing geometric properties over long periods of time. Of particular importance are Hamiltonian partial differential equations typically arising in application fields such as quantum mechanics or wave propagation phenomena. They exhibit many important dynamical features such as energy preservation and conservation of adiabatic invariants over long periods of time. In this setting, a natural question is how and to which extent the reproduction of such long-time qualitative behavior can be ensured by numerical schemes. Starting from numerical examples, these notes provide a detailed analysis of the Schrodinger equation in a simple setting (periodic boundary conditions, polynomial nonlinearities) approximated by symplectic splitting methods. Analysis of stability and instability phenomena induced by space and time discretization are given, and rigorous mathematical explanations are provided for them. The book grew out of a graduate-level course and is of interest to researchers and students seeking an introduction to the subject matter.