Semigroups of Bounded Operators and Second-Order Elliptic and Parabolic Partial Differential Equations aims to propose a unified approach to elliptic and parabolic equations with bounded and smooth coefficients. The book will highlight the connections between these equations and the theory of semigroups of operators, while demonstrating how the theory of semigroups represents a powerful tool to analyze general parabolic equations. Features Useful for students and researchers as an introduction to the field of partial differential equations of elliptic and parabolic types Introduces the reader to the theory of operator semigroups as a tool for the analysis of partial differential equations
"Semigroups of Bounded Operators and Second-Order Elliptic and Parabolic Partial Differential Equations aims to propose a unified approach to elliptic and parabolic equations with bounded and smooth coefficients. The book will highlight the connections between these equations and the theory of semigroups of operators, while demonstrating how the theory of semigroups represents a powerful tool to analyze general parabolic equations. Features Useful for students and researchers as an introduction to the field of partial differential equations of elliptic and parabolic type Introduces the reader to the theory of operator semigroups as a tool for the analysis of partial differential equations"--
Primarily aimed at researchers and postgraduates, but may be of interest to some professionals working in related fields, such as the insurance industry Suitable as supplementary reading for a standard course in applied probability Requires minimal prerequisites in mathematical analysis and probability theory
Fixed Point Results in W-Distance Spaces is a self-contained and comprehensive reference for advanced fixed-point theory and can serve as a useful guide for related research. The book can be used as a teaching resource for advanced courses on fixed-point theory, which is a modern and important field in mathematics. It would be especially valuable for graduate and postgraduate courses and seminars. Features Written in a concise and fluent style, covers a broad range of topics and includes related topics from research. Suitable for researchers and postgraduates. Contains brand new results not published elsewhere.
Noncommutative Polynomial Algebras of Solvable Type and Their Modules is the first book to systematically introduce the basic constructive-computational theory and methods developed for investigating solvable polynomial algebras and their modules. In doing so, this book covers: A constructive introduction to solvable polynomial algebras and Gröbner basis theory for left ideals of solvable polynomial algebras and submodules of free modules The new filtered-graded techniques combined with the determination of the existence of graded monomial orderings The elimination theory and methods (for left ideals and submodules of free modules) combining the Gröbner basis techniques with the use of Gelfand-Kirillov dimension, and the construction of different kinds of elimination orderings The computational construction of finite free resolutions (including computation of syzygies, construction of different kinds of finite minimal free resolutions based on computation of different kinds of minimal generating sets), etc. This book is perfectly suited to researchers and postgraduates researching noncommutative computational algebra and would also be an ideal resource for teaching an advanced lecture course.
The Center and Focus Problem: Algebraic Solutions and Hypotheses, M. N. Popa and V.V. Pricop, ISBN: 978-1-032-01725-9 (Hardback) This book focuses on an old problem of the qualitative theory of differential equations, called the Center and Focus Problem. It is intended for mathematicians, researchers, professors and Ph.D. students working in the field of differential equations, as well as other specialists who are interested in the theory of Lie algebras, commutative graded algebras, the theory of generating functions and Hilbert series. The book reflects the results obtained by the authors in the last decades. A rather essential result is obtained in solving Poincaré's problem. Namely, there are given the upper estimations of the number of Poincaré-Lyapunov quantities, which are algebraically independent and participate in solving the Center and Focus Problem that have not been known so far. These estimations are equal to Krull dimensions of Sibirsky graded algebras of comitants and invariants of systems of differential equations. Table of Contents 1. Lie Algebra Of Operators Of Centro-Affine Group Representation In The Coefficient Space Of Polynomial Differential Systems 2. Differential Equations For Centro-Affine Invariants And Comitants Of Differential Systems And Their Applications 3. Generating Functions And Hilbert Series For Sibirsky Graded Algebras Of Comitants And Invariants Of Differential Systems 4. Hilbert Series For Sibirsky Algebras And Krull Dimension For Them 5. About The Center And Focus Problem 6. On The Upper Bound Of The Number Of Algebraically Independent Focus Quantities That Take Part In Solving The Center And Focus Problem For The System s(1,m1,...,m`) 7. On The Upper Bound Of The Number Of Algebraically Independent Focus Quantities That Take Part In Solving The Center And Focus Problem For Lyapunov System. Bibliography Appendixes Biographies Popa Mihail Nicolae, holds a Ph.D. from Gorky University (now Nizhny Novgorod, Russia). He has served as Director and Deputy Director of Vladimir Andrunachievici Institute of Mathematics and Computer Science (IMCS)) in the Laboratory of Differential Equations. He is Professor at the State University of Tiraspol (based in Chisinau). His scientific interests are related to the invariant processes in the qualitative theory of differential equations, Lie algebras and commutative graded algebras, generating functions and Hilbert series, orbit theory, Lyapunov stability theory. Pricop Victor Vasile, holds a Ph.D. from Vladimir Andrunachievici Institute of Mathematics and Computer Science. He is professor at the State Institute of International Relations of Moldova. Victor Pricop's scientific interests are related to Lie algebras and graded algebras of invariants and comitants, generating functions and Hilbert series, applications of algebras to polynomial differential systems.
The volume originates from the 'Conference on Nonlinear Parabolic Problems' held in celebration of Herbert Amann's 70th birthday at the Banach Center in Bedlewo, Poland. It features a collection of peer-reviewed research papers by recognized experts highlighting recent advances in fields of Herbert Amann's interest such as nonlinear evolution equations, fluid dynamics, quasi-linear parabolic equations and systems, functional analysis, and more.
For the first time in book form, Analytical Methods for Markov Semigroups provides a comprehensive analysis on Markov semigroups both in spaces of bounded and continuous functions as well as in Lp spaces relevant to the invariant measure of the semigroup. Exploring specific techniques and results, the book collects and updates the literature associated with Markov semigroups. Divided into four parts, the book begins with the general properties of the semigroup in spaces of continuous functions: the existence of solutions to the elliptic and to the parabolic equation, uniqueness properties and counterexamples to uniqueness, and the definition and properties of the weak generator. It also examines properties of the Markov process and the connection with the uniqueness of the solutions. In the second part, the authors consider the replacement of RN with an open and unbounded domain of RN. They also discuss homogeneous Dirichlet and Neumann boundary conditions associated with the operator A. The final chapters analyze degenerate elliptic operators A and offer solutions to the problem. Using analytical methods, this book presents past and present results of Markov semigroups, making it suitable for applications in science, engineering, and economics.
The second edition of this book has a new title that more accurately reflects the table of contents. Over the past few years, many new results have been proven in the field of partial differential equations. This edition takes those new results into account, in particular the study of nonautonomous operators with unbounded coefficients, which has received great attention. Additionally, this edition is the first to use a unified approach to contain the new results in a singular place.
The property of maximal $L_p$-regularity for parabolic evolution equations is investigated via the concept of $\mathcal R$-sectorial operators and operator-valued Fourier multipliers. As application, we consider the $L_q$-realization of an elliptic boundary value problem of order $2m$ with operator-valued coefficients subject to general boundary conditions. We show that there is maximal $L_p$-$L_q$-regularity for the solution of the associated Cauchy problem provided the top order coefficients are bounded and uniformly continuous.