Semiconductor Laser Dynamics

Semiconductor Laser Dynamics

Author: Daan Lenstra

Publisher:

Published: 2020-09-10

Total Pages: 244

ISBN-13: 9783039430666

DOWNLOAD EBOOK

This is a collection of 18 papers, two of which are reviews and seven are invited feature papers, that together form the Photonics Special Issue "Semiconductor Laser Dynamics: Fundamentals and Applications", published in 2020. This collection is edited by Daan Lenstra, an internationally recognized specialist in the field for 40 years.


Nonlinear Laser Dynamics

Nonlinear Laser Dynamics

Author: Kathy Lüdge

Publisher: John Wiley & Sons

Published: 2012-04-09

Total Pages: 412

ISBN-13: 3527639837

DOWNLOAD EBOOK

A distinctive discussion of the nonlinear dynamical phenomena of semiconductor lasers. The book combines recent results of quantum dot laser modeling with mathematical details and an analytic understanding of nonlinear phenomena in semiconductor lasers and points out possible applications of lasers in cryptography and chaos control. This interdisciplinary approach makes it a unique and powerful source of knowledge for anyone intending to contribute to this field of research. By presenting both experimental and theoretical results, the distinguished authors consider solitary lasers with nano-structured material, as well as integrated devices with complex feedback sections. In so doing, they address such topics as the bifurcation theory of systems with time delay, analysis of chaotic dynamics, and the modeling of quantum transport. They also address chaos-based cryptography as an example of the technical application of highly nonlinear laser systems.


Passively Mode-Locked Semiconductor Lasers

Passively Mode-Locked Semiconductor Lasers

Author: Lina Jaurigue

Publisher: Springer

Published: 2017-06-22

Total Pages: 206

ISBN-13: 3319588745

DOWNLOAD EBOOK

This thesis investigates the dynamics of passively mode-locked semiconductor lasers, with a focus on the influence of optical feedback on the noise characteristics. The results presented here are important for improving the performance of passively mode-locked semiconductor lasers and, at the same time, are relevant for understanding delay-systems in general. The semi-analytic results developed are applicable to a broad range of oscillatory systems with time-delayed feedback, making the thesis of relevance to various scientific communities. Passively mode-locked lasers can produce pulse trains and have applications in the contexts of optical clocking, microscopy and optical data communication, among others. Using a system of delay differential equations to model these devices, a combination of numerical and semi-analytic methods is developed and used to characterize this system.


Laser Dynamics

Laser Dynamics

Author: Thomas Erneux

Publisher: Cambridge University Press

Published: 2010-04-29

Total Pages: 376

ISBN-13: 9780521830409

DOWNLOAD EBOOK

Bridging the gap between laser physics and applied mathematics, this book offers a new perspective on laser dynamics. Combining fresh treatments of classic problems with up-to-date research, asymptotic techniques appropriate for nonlinear dynamical systems are shown to offer a powerful alternative to numerical simulations. The combined analytical and experimental description of dynamical instabilities provides a clear derivation of physical formulae and an evaluation of their significance. Starting with the observation of different time scales of an operating laser, the book develops approximation techniques to systematically explore their effects. Laser dynamical regimes are introduced at different levels of complexity, from standard turn-on experiments to stiff, chaotic, spontaneous or driven pulsations. Particular attention is given to quantitative comparisons between experiments and theory. The book broadens the range of analytical tools available to laser physicists and provides applied mathematicians with problems of practical interest, making it invaluable for graduate students and researchers.


Semiconductor Lasers

Semiconductor Lasers

Author: Junji Ohtsubo

Publisher: Springer

Published: 2017-05-03

Total Pages: 679

ISBN-13: 3319561383

DOWNLOAD EBOOK

This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in semiconductor lasers are discussed, but also for example the method of self-mixing interferometry in quantum-cascade lasers, which is indispensable in practical applications. Further, this edition covers chaos synchronization between two lasers and the application to secure optical communications. Another new topic is the consistency and synchronization property of many coupled semiconductor lasers in connection with the analogy of the dynamics between synaptic neurons and chaotic semiconductor lasers, which are compatible nonlinear dynamic elements. In particular, zero-lag synchronization between distant neurons plays a crucial role for information processing in the brain. Lastly, the book presents an application of the consistency and synchronization property in chaotic semiconductor lasers, namely a type of neuro-inspired information processing referred to as reservoir computing.


Unlocking Dynamical Diversity

Unlocking Dynamical Diversity

Author: Deborah M. Kane

Publisher: John Wiley & Sons

Published: 2005-11-01

Total Pages: 356

ISBN-13: 0470856203

DOWNLOAD EBOOK

Applications of semiconductor lasers with optical feedback systems are driving rapid developments in theoretical and experimental research. The very broad wavelength-gain-bandwidth of semiconductor lasers combined with frequency-filtered, strong optical feedback create the tunable, single frequency laser systems utilised in telecommunications, environmental sensing, measurement and control. Those with weak to moderate optical feedback lead to the chaotic semiconductor lasers of private communication. This resource illustrates the diversity of dynamic laser states and the technological applications thereof, presenting a timely synthesis of current findings, and providing the roadmap for exploiting their future potential. * Provides theory-based explanations underpinned by a vast range of experimental studies on optical feedback, including conventional, phase conjugate and frequency- filtered feedback in standard, commercial and single-stripe semiconductor lasers * Includes the classic Lang-Kobayashi equation model, through to more recent theory, with new developments in techniques for solving delay differential equations and bifurcation analysis * Explores developments in self-mixing interferometry to produce sub-nanometre sensitivity in path-length measurements * Reviews tunable single frequency semiconductor lasers and systems and their diverse range of applications in sensing and optical communications * Emphasises the importance of synchronised chaotic semiconductor lasers using optical feedback and private communications systems Unlocking Dynamical Diversity illustrates all theory using real world examples gleaned from international cutting-edge research. Such an approach appeals to industry professionals working in semiconductor lasers, laser physics and laser applications and is essential reading for researchers and postgraduates in these fields.


Digital Communications Using Chaos and Nonlinear Dynamics

Digital Communications Using Chaos and Nonlinear Dynamics

Author: Jia-Ming Liu

Publisher: Springer Science & Business Media

Published: 2006-11-22

Total Pages: 392

ISBN-13: 038729788X

DOWNLOAD EBOOK

This book provides a summary of the research conducted at UCLA, Stanford University, and UCSD over the last ?ve years in the area of nonlinear dyn- ics and chaos as applied to digital communications. At ?rst blush, the term “chaotic communications” seems like an oxymoron; how could something as precise and deterministic as digital communications be chaotic? But as this book will demonstrate, the application of chaos and nonlinear dynamicstocommunicationsprovidesmanypromisingnewdirectionsinareas of coding, nonlinear optical communications, and ultra-wideband commu- cations. The eleven chapters of the book summarize many of the promising new approaches that have been developed, and point the way to new research directions in this ?eld. Digital communications techniques have been continuously developed and re?ned for the past ?fty years to the point where today they form the heart of a multi-hundred billion dollar per year industry employing hundreds of thousands of people on a worldwide basis. There is a continuing need for transmission and reception of digital signals at higher and higher data rates. There are a variety of physical limits that place an upper limit on these data rates, and so the question naturally arises: are there alternative communi- tion techniques that can overcome some of these limitations? Most digital communications today is carried out using electronic devices that are essentially “linear,” and linear system theory has been used to c- tinually re?ne their performance. In many cases, inherently nonlinear devices are linearized in order to achieve a certain level of linear system performance.


Optical Communication with Chaotic Lasers

Optical Communication with Chaotic Lasers

Author: Atsushi Uchida

Publisher: John Wiley & Sons

Published: 2012-02-13

Total Pages: 669

ISBN-13: 352740869X

DOWNLOAD EBOOK

Starting with an introduction to the fundamental physics in chaotic instabilities in laser systems, this comprehensive and unified reference goes on to present the techniques and technology of synchronization of chaos in coupled lasers, as well as the many applications to lasers and optics, communications, security and information technology. Throughout, it presents the current state of knowledge, including encoding/decoding techniques, performance of chaotic communication systems, random number generation, and novel communication technologies.


Dynamics of Lasers

Dynamics of Lasers

Author: C. O. Weiss

Publisher: Wiley-VCH

Published: 1991

Total Pages: 300

ISBN-13:

DOWNLOAD EBOOK

Monograph on laser dynamics, intended for those involved with laser optics, nonlinear dynamics, atomic physics, solid state physics molecular physics and spectroscopy. Subjects covered include the history of laser dynamics, theoretical models of nonlinear dynamics, and practical usage.


Semiconductor-Laser Fundamentals

Semiconductor-Laser Fundamentals

Author: Weng W. Chow

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 253

ISBN-13: 3662038803

DOWNLOAD EBOOK

This in-depth title discusses the underlying physics and operational principles of semiconductor lasers. It analyzes the optical and electronic properties of the semiconductor medium in detail, including quantum confinement and gain-engineering effects. The text also includes recent developments in blue-emitting semiconductor lasers.