Selected Semiconductor Research

Selected Semiconductor Research

Author: Ming-Fu Li

Publisher: World Scientific

Published: 2011

Total Pages: 529

ISBN-13: 1848164068

DOWNLOAD EBOOK

This book on solid state physics has been written with an emphasis on recent developments in quantum many-body physics approaches. It starts by covering the classical theory of solids and electrons and describes how this classical model has failed. The authors then present the quantum mechanical model of electrons in a lattice and they also discuss the theory of conductivity. Extensive reviews on the topic are provided in a compact manner so that any non-specialist can follow from the beginning.The authors cover the system of magnetism in a similar way and various problems in magnetic materials are discussed. The book also discusses the Ising chain, the Heisenberg model, the Kondo effect and superconductivity, amongst other relevant topics.In the final chapter, the authors present some works related to contemporary research topics, such as quantum entanglement in many-body systems and quantum simulations. They also include a short review of some of the possible applications of solid state quantum information in biological systems.


Selected Semiconductor Research

Selected Semiconductor Research

Author: Ming Fu Li

Publisher: World Scientific

Published: 2011-02-28

Total Pages: 529

ISBN-13: 1908978384

DOWNLOAD EBOOK

This unique volume assembles the author's scientific and engineering achievements of the past three decades in the areas of (1) semiconductor physics and materials, including topics in deep level defects and band structures, (2) CMOS devices, including the topics in device technology, CMOS device reliability, and nano CMOS device quantum modeling, and (3) Analog Integrated circuit design. It reflects the scientific career of a semiconductor researcher educated in China during the 20th century. The book can be referenced by research scientists, engineers, and graduate students working in the areas of solid state and semiconductor physics and materials, electrical engineering and semiconductor devices, and chemical engineering./a


Advances in Semiconductor Research

Advances in Semiconductor Research

Author: Dominique Persano Adorno

Publisher: Nova Science Publishers

Published: 2014

Total Pages: 0

ISBN-13: 9781633217553

DOWNLOAD EBOOK

The world of semiconductor research is continuously expanding our knowledge of the physics governing phenomena at micro and nano scales, driving the development of new technologies and rapidly enhancing the quality of our everyday life. The huge amount of scientific papers published today in this field of research confirms the great interest of the scientific community in semiconductor science and its future applications. However, this enormous growth of available scientific information sometimes makes the familiar channels of communication considerably less effective, because of the difficulties for experts in a given field to keep up with the current literature. "Advances in Semiconductor Physics" Series has been conceived mainly to improve this situation. This monograph presents a collection of selected contributions reporting some of the most stimulating and challenging results obtained by recent researches in the field of semiconductor physics. About the same number of theoretical, experimental and simulative studies have been included in this book, driven by the basic idea that all these different types of investigations are equally important in increasing our understanding of the physics of semiconductors.


Fundamentals of Semiconductors

Fundamentals of Semiconductors

Author: Peter YU

Publisher: Springer Science & Business Media

Published: 2007-05-08

Total Pages: 651

ISBN-13: 3540264752

DOWNLOAD EBOOK

Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors ... I know of no better text ... I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters.


History of Semiconductor Engineering

History of Semiconductor Engineering

Author: Bo Lojek

Publisher: Springer Science & Business Media

Published: 2007-07-28

Total Pages: 394

ISBN-13: 3540342583

DOWNLOAD EBOOK

This book provides a unique account of the history of integrated circuit, the microelectronics industry and the people involved in the development of transistor and integrated circuit. In this richly illustrated account the author argues that the group of inventors was much larger than originally thought. This is a personal recollection providing the first comprehensive behind-the-scenes account of the history of the integrated circuit.


The Physics of Semiconductors

The Physics of Semiconductors

Author: Marius Grundmann

Publisher: Springer Nature

Published: 2021-03-06

Total Pages: 905

ISBN-13: 3030515699

DOWNLOAD EBOOK

The 4th edition of this highly successful textbook features copious material for a complete upper-level undergraduate or graduate course, guiding readers to the point where they can choose a specialized topic and begin supervised research. The textbook provides an integrated approach beginning from the essential principles of solid-state and semiconductor physics to their use in various classic and modern semiconductor devices for applications in electronics and photonics. The text highlights many practical aspects of semiconductors: alloys, strain, heterostructures, nanostructures, amorphous semiconductors, and noise, which are essential aspects of modern semiconductor research but often omitted in other textbooks. This textbook also covers advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, and transparent conductive oxides. The 4th edition includes many updates and chapters on 2D materials and aspects of topology. The text derives explicit formulas for many results to facilitate a better understanding of the topics. Having evolved from a highly regarded two-semester course on the topic, The Physics of Semiconductors requires little or no prior knowledge of solid-state physics. More than 2100 references guide the reader to historic and current literature including original papers, review articles and topical books, providing a go-to point of reference for experienced researchers as well.


Advances in Semiconductor Technologies

Advances in Semiconductor Technologies

Author: An Chen

Publisher: John Wiley & Sons

Published: 2022-09-27

Total Pages: 372

ISBN-13: 1119869609

DOWNLOAD EBOOK

Advances in Semiconductor Technologies Discover the broad sweep of semiconductor technologies in this uniquely curated resource Semiconductor technologies and innovations have been the backbone of numerous different fields: electronics, online commerce, the information and communication industry, and the defense industry. For over fifty years, silicon technology and CMOS scaling have been the central focus and primary driver of innovation in the semiconductor industry. Traditional CMOS scaling has approached some fundamental limits, and as a result, the pace of scientific research and discovery for novel semiconductor technologies is increasing with a focus on novel materials, devices, designs, architectures, and computer paradigms. In particular, new computing paradigms and systems—such as quantum computing, artificial intelligence, and Internet of Things—have the potential to unlock unprecedented power and application space. Advances in Semiconductor Technologies provides a comprehensive overview of selected semiconductor technologies and the most up-to-date research topics, looking in particular at mainstream developments in current industry research and development, from emerging materials and devices, to new computing paradigms and applications. This full-coverage volume gives the reader valuable insights into state-of-the-art advances currently being fabricated, a wide range of novel applications currently under investigation, and a glance into the future with emerging technologies in development. Advances in Semiconductor Technologies readers will also find: A comprehensive approach that ensures a thorough understanding of state-of-the-art technologies currently being fabricated Treatments on all aspects of semiconductor technologies, including materials, devices, manufacturing, modeling, design, architecture, and applications Articles written by an impressive team of international academics and industry insiders that provide unique insights into a wide range of topics Advances in Semiconductor Technologies is a useful, time-saving reference for electrical engineers working in industry and research, who are looking to stay abreast of rapidly advancing developments in semiconductor electronics, as well as academics in the field and government policy advisors.


Characterization of Semiconductor Heterostructures and Nanostructures

Characterization of Semiconductor Heterostructures and Nanostructures

Author: Giovanni Agostini

Publisher: Elsevier

Published: 2011-08-11

Total Pages: 501

ISBN-13: 0080558151

DOWNLOAD EBOOK

In the last couple of decades, high-performance electronic and optoelectronic devices based on semiconductor heterostructures have been required to obtain increasingly strict and well-defined performances, needing a detailed control, at the atomic level, of the structural composition of the buried interfaces. This goal has been achieved by an improvement of the epitaxial growth techniques and by the parallel use of increasingly sophisticated characterization techniques and of refined theoretical models based on ab initio approaches. This book deals with description of both characterization techniques and theoretical models needed to understand and predict the structural and electronic properties of semiconductor heterostructures and nanostructures. - Comprehensive collection of the most powerful characterization techniques for semiconductor heterostructures and nanostructures - Most of the chapters are authored by scientists that are among the top 10 worldwide in publication ranking of the specific field - Each chapter starts with a didactic introduction on the technique - The second part of each chapter deals with a selection of top examples highlighting the power of the specific technique to analyze the properties of semiconductors


Essentials of Semiconductor Physics

Essentials of Semiconductor Physics

Author: W. Tom Wenckebach

Publisher: John Wiley & Sons

Published: 1999-11-05

Total Pages: 344

ISBN-13:

DOWNLOAD EBOOK

Provides a modern introduction to semiconductor physics, presentingthe basic information necessary to understand semiconductors, alongwith some of the latest theories and developments. Based on theauthor's undergraduate course, this book bridges the gap betweenbasic subjects such as quantum mechanics and Maxwell's equationsand the fundamental processes determining the behaviour ofsemiconductors. Following a quantum mechanics approach this text ispredominantly aimed at scientists rather then engineers, and formsthe basis for the understanding of modern mesoscopic physics insemiconductors and quantum devices like resonant tunnelingdiodes. Rather than attempting to comprehensively cover all aspects ofsemiconductor physics, this text aims to cover the most importantand interesting aspects of this subject to scientists. Startingwith the development of semiconductor physics from basic quantummechanics, the text moves on to cover band structure and effectivemass theory, before covering electron-phonon coupling and chargetransport. It concludes with a chapter on optical transitions.Students will need some knowledge of quantum mechanics and solidstate although this is covered to some extent in the book. FEATURES * Concise introduction to the basics of semiconductor physics * Bridges the gap between fundamental subjects such as quantummechanics and Maxwell's equations and the processes determining thebehaviour of semiconductors * Describes semiconductor theory from a full quantum mechanicalapproach.An accessible introduction, avoiding reliance on grouptheory CONTENTS: Preface; Notation Conventions; Introduction; Electrons,nuclei and Hamiltonians; Band Structure; The k - p Approximation;Effective Mass Theory; The Crystal Lattice; Electron-phononCoupling; Charge Transport, Optical Transitions; Band Electrons inan Optical Field; Appendix A: The Hydrogen Atom; Appendix B: TheHarmonic Oscillator; Appendix C: Perturbation Theory; AppendixD:Tensors in Cubic Crystals; Appendix E: The Classical Limit;Appendix F: Some Fourier Transforms; Appendix G: Exercises;Bibliography.


Semiconductor Manufacturing Technology

Semiconductor Manufacturing Technology

Author: Chue San Yoo

Publisher: World Scientific

Published: 2008

Total Pages: 483

ISBN-13: 9812568239

DOWNLOAD EBOOK

This textbook contains all the materials that an engineer needs to know to start a career in the semiconductor industry. It also provides readers with essential background information for semiconductor research. It is written by a professional who has been working in the field for over two decades and teaching the material to university students for the past 15 years. It includes process knowledge from raw material preparation to the passivation of chips in a modular format.