Seismic Waves and Sources

Seismic Waves and Sources

Author: A. Ben-Menahem

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 1127

ISBN-13: 1461258561

DOWNLOAD EBOOK

Earthquakes come and go as they please, leaving behind them trails of destruc tion and casualties. Although their occurrence is little affected by what we do or think, it is the task of earth scientists to keep studying them from all possible angles until ways and means are found to divert, forecast, and eventually control them. In ancient times people were awestruck by singular geophysical events, which were attributed to supernatural powers. It was recognized only in 1760 that earthquakes originated within the earth. A hundred years later, first systematic attempts were made to apply physical principles to study them. During the next century scientists accumulated knowledge about the effects of earthquakes, their geographic patterns, the waves emitted by them, and the internal constitution of the earth. During the past 20 years, seismology has made a tremendous progress, mainly because of the advent of modern computers and improvements in data acquisi tion systems, which are now capable of digital and analog recording of ground motion over a frequency range of five orders of magnitude. These technologic developments have enabled seismologists to make measurements with far greater precision and sophistication than was previously possible. Advanced computational analyses have been applied to high-quality data and elaborate theoretical models have been devised to interpret them. As a result, far reaching advances in our knowledge of the earth's structure and the nature of earthquake sources have occurred.


Introduction to Seismology

Introduction to Seismology

Author: M. Bath

Publisher: Birkhäuser

Published: 2013-11-11

Total Pages: 422

ISBN-13: 3034852835

DOWNLOAD EBOOK

To Seismology Second, Revised Edition 1979 Springer Basel AG First published under Markus Bath, Introduktion till Seism%gin by Natur och Kultur Stockholm © 1970, Markus Bath and Bokforlaget Natur och Kultur, Stockholm CIP-Kurztitelaufnahme der Deutschen Bibliothek Bath, Markus: Introduction to seismology / Markus Bath. - 2., rev. ed. (Wissenschaft und Kultur; Bd. 27) Einheitssacht. : Introduktion till seismologin (dt.) ISBN 978-3-0348-5285-2 ISBN 978-3-0348-5283-8 (eBook) DOI 10. 1007/978-3-0348-5283-8 All rights reserved No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the publisher English translation © 1973, 1979 Springer Basel AG Urspriinglich erschienen bei Birkhlluser Verlag Basel 1979 Softcover reprint of tbe hardcover 2nd edition 1979 ISBN 978-3-0348-5285-2 The data must be greatly amplified Preface and strengthened. to the First Edition BE NO GUTENBERG (1959) The purpose of this book is to give a popular review of modern seismology, its research methods, problems of current interest and results and also to some extent to elucidate the historical background. Especially in recent years, seismology has attracted much interest from the general public as well as from news agencies. The reasons for this are partly con nected with recordings of large explosions (nuclear tests), partly related to earthquake catastrophes. This interest and the questions which people have asked us for the past years have to a certain extent served as a sti mulus in the preparation of this book.


Seismic Wave Propagation and Scattering in the Heterogenous Earth

Seismic Wave Propagation and Scattering in the Heterogenous Earth

Author: Haruo Sato

Publisher: Springer Science & Business Media

Published: 2008-12-17

Total Pages: 308

ISBN-13: 3540896236

DOWNLOAD EBOOK

Seismic waves – generated both by natural earthquakes and by man-made sources – have produced an enormous amount of information about the Earth's interior. In classical seismology, the Earth is modeled as a sequence of uniform horizontal layers (or sperical shells) having different elastic properties and one determines these properties from travel times and dispersion of seismic waves. The Earth, however, is not made of horizontally uniform layers, and classic seismic methods can take large-scale inhomogeneities into account. Smaller-scale irregularities, on the other hand, require other methods. Observations of continuous wave trains that follow classic direct S waves, known as coda waves, have shown that there are heterogeneities of random size scattered randomly throughout the layers of the classic seismic model. This book focuses on recent developments in the area of seismic wave propagation and scattering through the randomly heterogeneous structure of the Earth, with emphasis on the lithosphere. The presentation combines information from many sources to present a coherent introduction to the theory of scattering in acoustic and elastic materials and includes analyses of observations using the theoretical methods developed.


Seismic Wave Propagation in Stratified Media

Seismic Wave Propagation in Stratified Media

Author: Brian Kennett

Publisher: ANU E Press

Published: 2009-05-01

Total Pages: 298

ISBN-13: 192153673X

DOWNLOAD EBOOK

Seismic Wave Propagation in Stratified Media presents a systematic treatment of the interaction of seismic waves with Earth structure. The theoretical development is physically based and is closely tied to the nature of the seismograms observed across a wide range of distance scales - from a few kilometres as in shallow reflection work for geophysical prospecting, to many thousands of kilometres for major earthquakes. A unified framework is presented for all classes of seismic phenomena, for both body waves and surface waves. Since its first publication in 1983 this book has been an important resource for understanding the way in which seismic waves can be understood in terms of reflection and transmission properties of Earth models, and how complete theoretical seismograms can be calculated. The methods allow the development of specific approximations that allow concentration on different seismic arrivals and hence provide a direct tie to seismic observations.


Modern Global Seismology

Modern Global Seismology

Author: Thorne Lay

Publisher: Elsevier

Published: 1995-05-18

Total Pages: 535

ISBN-13: 0080536719

DOWNLOAD EBOOK

Intended as an introduction to the field, Modern Global Seismology is a complete, self-contained primer on seismology. It features extensive coverage of all related aspects, from observational data through prediction, emphasizing the fundamental theories and physics governing seismic waves--both natural and anthropogenic. Based on thoroughly class-tested material, the text provides a unique perspective on the earths large-scale internal structure and dynamic processes, particularly earthquake sources, and on the application of theory to the dynamic processes of the earths upper skin. Authored by two experts in the field of geophysics. this insightful text is designed for the first-year graduate course in seismology. Exploration seismologists will also find it an invaluable resource on topics such as elastic-wave propagation, seismicinstrumentation, and seismogram analysis useful in interpreting their high-resolution images of structure for oil and mineral resource exploration. - More than 400 illustrations, many from recent research articles, help readers visualize mathematical relationships - 49 Boxed Features explain advanced topics - Provides readers with the most in-depth presentation of earthquake physics available - Contains incisive treatments of seismic waves, waveform evaluation and modeling, and seismotectonics - Provides quantitative treatment of earthquake source mechanics - Contains numerous examples of modern broadband seismic recordings - Fully covers current seismic instruments and networks - Demonstrates modern waveform inversion methods - Includes extensive references for further reading


Seismic Wave Propagation in the Earth

Seismic Wave Propagation in the Earth

Author: Andrzej Hanyga

Publisher: Elsevier Publishing Company

Published: 1985

Total Pages: 504

ISBN-13:

DOWNLOAD EBOOK

This volume contains an extensive presentation of the theory, phenomenology and interpretation of seismic waves produced by natural and artificial sources. Each theoretical topic discussed in the book is presented in a self-contained and mathematically rigorous form, yet without excessive demands on the reader's mathematical background. It is the only book to include such a complete presentation of the mathematical background and modern developments of the WKBJ theory of seismic waves, and detailed discussions of its wide ranging applications. The book will therefore be useful to postgraduate students and research workers specialising in seismic wave theory, theoretical seismology, electromagnetic wave theory and other fields of wave propagation theory.


Introduction to Seismology

Introduction to Seismology

Author: Peter M. Shearer

Publisher: Cambridge University Press

Published: 2009-06-11

Total Pages: 397

ISBN-13: 1139478753

DOWNLOAD EBOOK

This book provides an approachable and concise introduction to seismic theory, designed as a first course for undergraduate students. It clearly explains the fundamental concepts, emphasizing intuitive understanding over lengthy derivations. Incorporating over 30% new material, this second edition includes all the topics needed for a one-semester course in seismology. Additional material has been added throughout including numerical methods, 3-D ray tracing, earthquake location, attenuation, normal modes, and receiver functions. The chapter on earthquakes and source theory has been extensively revised and enlarged, and now includes details on non-double-couple sources, earthquake scaling, radiated energy, and finite slip inversions. Each chapter includes worked problems and detailed exercises that give students the opportunity to apply the techniques they have learned to compute results of interest and to illustrate the Earth's seismic properties. Computer subroutines and datasets for use in the exercises are available at www.cambridge.org/shearer.


Fundamentals of Seismic Wave Propagation

Fundamentals of Seismic Wave Propagation

Author: Chris Chapman

Publisher: Cambridge University Press

Published: 2004-07-29

Total Pages: 646

ISBN-13: 9781139451635

DOWNLOAD EBOOK

Fundamentals of Seismic Wave Propagation, published in 2004, presents a comprehensive introduction to the propagation of high-frequency body-waves in elastodynamics. The theory of seismic wave propagation in acoustic, elastic and anisotropic media is developed to allow seismic waves to be modelled in complex, realistic three-dimensional Earth models. This book provides a consistent and thorough development of modelling methods widely used in elastic wave propagation ranging from the whole Earth, through regional and crustal seismology, exploration seismics to borehole seismics, sonics and ultrasonics. Particular emphasis is placed on developing a consistent notation and approach throughout, which highlights similarities and allows more complicated methods and extensions to be developed without difficulty. This book is intended as a text for graduate courses in theoretical seismology, and as a reference for all academic and industrial seismologists using numerical modelling methods. Exercises and suggestions for further reading are included in each chapter.


Seismic Surface Waves in a Laterally Inhomogeneous Earth

Seismic Surface Waves in a Laterally Inhomogeneous Earth

Author: V.I. Keilis-Borok

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 296

ISBN-13: 9400908830

DOWNLOAD EBOOK

Surface waves form the longest and strongest portion of a seismic record excited by explosions and shallow earthquakes. Traversing areas with diverse geologic structures, they 'absorb' information on the properties of these areas which is best retlected in dispersion, the dependence of velocity on frequency. The other prop erties of these waves - polarization, frequency content, attenuation, azimuthal variation of the amplitude and phase - arc also controlled by the medium between the source and the recording station; some of these are affected by the properties of the source itself and by the conditions around it. In recent years surface wave seismology has become an indispensable part of seismological practice. The maximum amplitude in the surface wave train of virtually every earthquake or major explosion is being measured and used by all national and international seismological surveys in the determination of the most important energy parameter of a seismic source, namely, the magnitude M,. The relationship between M, and the body wave magnitude fI1t, is routinely employed in identification of underground nuclear explosions. Surface waves of hundreds of earthquakes recorded every year are being analysed to estimate the seismic moment tensor of earthquake sources, to determine the periods of free oscillations of the Earth, to construct regional dispersion curves from which in turn the crustal and upper mantle structure in various areas is derived, and to evaluate the dissipative parameters of the mantle material.