Seismic Performance Analysis of Concrete Gravity Dams

Seismic Performance Analysis of Concrete Gravity Dams

Author: Gaohui Wang

Publisher: Springer Nature

Published: 2020-07-10

Total Pages: 281

ISBN-13: 981156194X

DOWNLOAD EBOOK

This book evaluates the seismic performance of concrete gravity dams, considering the effects of strong motion duration, mainshock-aftershock seismic sequence, and near-fault ground motion. It employs both the extended finite element method (XFEM) and concrete damaged plasticity (CDP) models to characterize the mechanical behavior of concrete gravity dams under strong ground motions, including the dam-reservoir-foundation interaction. In addition, it discusses the effects of the initial crack, earthquake direction, and cross-stream seismic excitation on the nonlinear dynamic response to strong ground motions, and on the damage-cracking risk of concrete gravity dams. This book provides a theoretical basis for the seismic performance evaluation of high dams, and can also be used as a reference resource for researchers and graduate students engaged in the seismic design of high dams.


Earthquake Engineering for Concrete Dams

Earthquake Engineering for Concrete Dams

Author: Anil K. Chopra

Publisher: John Wiley & Sons

Published: 2020-03-16

Total Pages: 313

ISBN-13: 1119056039

DOWNLOAD EBOOK

A comprehensive guide to modern-day methods for earthquake engineering of concrete dams Earthquake analysis and design of concrete dams has progressed from static force methods based on seismic coefficients to modern procedures that are based on the dynamics of dam–water–foundation systems. Earthquake Engineering for Concrete Dams offers a comprehensive, integrated view of this progress over the last fifty years. The book offers an understanding of the limitations of the various methods of dynamic analysis used in practice and develops modern methods that overcome these limitations. This important book: Develops procedures for dynamic analysis of two-dimensional and three-dimensional models of concrete dams Identifies system parameters that influence their response Demonstrates the effects of dam–water–foundation interaction on earthquake response Identifies factors that must be included in earthquake analysis of concrete dams Examines design earthquakes as defined by various regulatory bodies and organizations Presents modern methods for establishing design spectra and selecting ground motions Illustrates application of dynamic analysis procedures to the design of new dams and safety evaluation of existing dams. Written for graduate students, researchers, and professional engineers, Earthquake Engineering for Concrete Dams offers a comprehensive view of the current procedures and methods for seismic analysis, design, and safety evaluation of concrete dams.


Earthquake Engineering for Concrete Dams

Earthquake Engineering for Concrete Dams

Author: National Research Council

Publisher: National Academies Press

Published: 1991-02-01

Total Pages: 154

ISBN-13: 0309043360

DOWNLOAD EBOOK

The hazard posed by large dams has long been known. Although no concrete dam has failed as a result of earthquake activity, there have been instances of significant damage. Concerns about the seismic safety of concrete dams have been growing recently because the population at risk in locations downstream of major dams continues to expand and because the seismic design concepts in use at the time most existing dams were built were inadequate. In this book, the committee evaluates current knowledge about the earthquake performance of concrete dams, including procedures for investigating the seismic safety of such structures. Earthquake Engineering for Concrete Dams specifically informs researchers about state-of-the-art earthquake analysis of concrete dams and identifies subject areas where additional knowledge is needed.


The Scaled Boundary Finite Element Method

The Scaled Boundary Finite Element Method

Author: Chongmin Song

Publisher: John Wiley & Sons

Published: 2018-06-19

Total Pages: 775

ISBN-13: 1119388457

DOWNLOAD EBOOK

An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.


Advances in Dam Engineering

Advances in Dam Engineering

Author: M. Amin Hariri-Ardebili

Publisher: MDPI

Published: 2020-12-15

Total Pages: 202

ISBN-13: 3039363263

DOWNLOAD EBOOK

Expansion of water resources is a key factor in the socio-economic development of all countries. Dams play a critical role in water storage, especially for areas with unequal rainfall and limited water availability. While the safety of existing dams, periodic re-evaluations and life extensions are the primary objectives in developed countries, the design and construction of new dams are the main concerns in developing countries. The role of dam engineers has greatly changed over recent decades. Thanks to new technologies, the surveillance, monitoring, design and analysis tasks involved in this process have significantly improved. The current edited book is a collection of dam-related papers. The overall aim of this edited book is to improve modeling, simulation and field measurements for different dam types (i.e. concrete gravity dams, concrete arch dams, and embankments). The articles cover a wide range of topics on the subject of dams, and reflect the scientific efforts and engineering approaches in this challenging and exciting research field.


Proceedings of 17th Symposium on Earthquake Engineering (Vol. 2)

Proceedings of 17th Symposium on Earthquake Engineering (Vol. 2)

Author: Manish Shrikhande

Publisher: Springer Nature

Published: 2023-07-19

Total Pages: 823

ISBN-13: 9819916046

DOWNLOAD EBOOK

This book presents select proceedings of the 17th Symposium on Earthquake Engineering organized by the Department of Earthquake Engineering, Indian Institute of Technology Roorkee. The topics covered in the proceedings include engineering seismology and seismotectonics, earthquake hazard assessment, seismic microzonation and urban planning, dynamic properties of soils and ground response, ground improvement techniques for seismic hazards, computational soil dynamics, dynamic soil–structure interaction, codal provisions on earthquake-resistant design, seismic evaluation and retrofitting of structures, earthquake disaster mitigation and management, and many more. This book also discusses relevant issues related to earthquakes, such as human response and socioeconomic matters, post-earthquake rehabilitation, earthquake engineering education, public awareness, participation and enforcement of building safety laws, and earthquake prediction and early warning system. This book is a valuable reference for researchers and professionals working in the area of earthquake engineering.


Dynamics of Structures

Dynamics of Structures

Author: Patrick Paultre

Publisher: John Wiley & Sons

Published: 2013-02-04

Total Pages: 665

ISBN-13: 1118599691

DOWNLOAD EBOOK

This book covers structural dynamics from a theoretical and algorithmic approach. It covers systems with both single and multiple degrees-of-freedom. Numerous case studies are given to provide the reader with a deeper insight into the practicalities of the area, and the solutions to these case studies are given in terms of real-time and frequency in both geometric and modal spaces. Emphasis is also given to the subject of seismic loading. The text is based on many lectures on the subject of structural dynamics given at numerous institutions and thus will be an accessible and practical aid to students of the subject. Key features: Examines the effects of loads, impacts, and seismic forces on the materials used in the construction of buildings, bridges, tunnels, and more Structural dynamics is a critical aspect of the design of all engineered/designed structures and objects - allowing for accurate prediction of their ability to withstand service loading, and for knowledge of failure-causeing or critical loads