Seifert Fiberings

Seifert Fiberings

Author: Kyung Bai Lee

Publisher: American Mathematical Soc.

Published: 2010-11-24

Total Pages: 418

ISBN-13: 0821852310

DOWNLOAD EBOOK

Seifert fiberings extend the notion of fiber bundle mappings by allowing some of the fibers to be singular. Away from the singular fibers, the fibering is an ordinary bundle with fiber a fixed homogeneous space. The singular fibers are quotients of this homogeneous space by distinguished groups of homeomorphisms. These fiberings are ubiquitous and important in mathematics. This book describes in a unified way their structure, how they arise, and how they are classified and used in applications. Manifolds possessing such fiber structures are discussed and range from the classical three-dimensional Seifert manifolds to higher dimensional analogues encompassing, for example, flat manifolds, infra-nil-manifolds, space forms, and their moduli spaces. The necessary tools not covered in basic graduate courses are treated in considerable detail. These include transformation groups, cohomology of groups, and needed Lie theory. Inclusion of the Bieberbach theorems, existence, uniqueness, and rigidity of Seifert fiberings, aspherical manifolds, symmetric spaces, toral rank of spherical space forms, equivariant cohomology, polynomial structures on solv-manifolds, fixed point theory, and other examples, exercises and applications attest to the breadth of these fiberings. This is the first time the scattered literature on singular fiberings is brought together in a unified approach. The new methods and tools employed should be valuable to researchers and students interested in geometry and topology.


Seifert Fibered Spaces in 3-Manifolds

Seifert Fibered Spaces in 3-Manifolds

Author: William H. Jaco

Publisher: American Mathematical Soc.

Published: 1979

Total Pages: 204

ISBN-13: 0821822209

DOWNLOAD EBOOK

The main theorem of this monograph, or rather the "absolute" case of the main theorem, provides what is essentially a homotopy-classification of suitably "nondegenerate" maps of Seifert-fibered 3-manifolds into a sufficiently-large, compact, irreducible, orientable 3-manifold M.


Handbook of Geometric Topology

Handbook of Geometric Topology

Author: R.B. Sher

Publisher: Elsevier

Published: 2001-12-20

Total Pages: 1145

ISBN-13: 0080532853

DOWNLOAD EBOOK

Geometric Topology is a foundational component of modern mathematics, involving the study of spacial properties and invariants of familiar objects such as manifolds and complexes. This volume, which is intended both as an introduction to the subject and as a wide ranging resouce for those already grounded in it, consists of 21 expository surveys written by leading experts and covering active areas of current research. They provide the reader with an up-to-date overview of this flourishing branch of mathematics.


Diffeomorphisms of Elliptic 3-Manifolds

Diffeomorphisms of Elliptic 3-Manifolds

Author: Sungbok Hong

Publisher: Springer

Published: 2012-08-29

Total Pages: 163

ISBN-13: 364231564X

DOWNLOAD EBOOK

This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle. The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small list of known exceptions, is contractible. Considerable foundational and background


Lectures on Three-Manifold Topology

Lectures on Three-Manifold Topology

Author: William H. Jaco

Publisher: American Mathematical Soc.

Published: 1980-12-31

Total Pages: 266

ISBN-13: 0821816934

DOWNLOAD EBOOK

This manuscript is a detailed presentation of the ten lectures given by the author at the NSF Regional Conference on Three-Manifold Topology, held October 1977, at Virginia Polytechnic Institute and State University. The purpose of the conference was to present the current state of affairs in three-manifold topology and to integrate the classical results with the many recent advances and new directions.


A Fête of Topology

A Fête of Topology

Author: Y. Matsumoto

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 615

ISBN-13: 1483259188

DOWNLOAD EBOOK

A Fête of Topology: Papers Dedicated to Itiro Tamura focuses on the progress in the processes, methodologies, and approaches involved in topology, including foliations, cohomology, and surface bundles. The publication first takes a look at leaf closures in Riemannian foliations and differentiable singular cohomology for foliations. Discussions focus on differentiable singular chains restricted to leaves, differentiable singular cohomology for foliations, covering of pseudogroups and fundamental group, normal type of an orbit closure, and construction of a global model. The text then takes a look at measure of exceptional minimal sets of codimension one foliations, examples of exceptional minimal sets, foliations transverse to non-singular Morse-Smale flows, and Chern character for discrete groups. The manuscript ponders on characteristic classes of surface bundles and bounded cohomology, Hill's equation, isomonodromy deformation and characteristic classes, and topology of folds, cusps, and Morin singularities. Topics include system of Hill's equations, Lagrange-Grassman manifold, positive curves, Morse theory, bounded cohomology, and characteristic classes of surface bundles. The publication is a vital source of information for researchers interested in topology.


Group Actions on Manifolds

Group Actions on Manifolds

Author: Reinhard Schultz

Publisher: American Mathematical Soc.

Published: 1985

Total Pages: 586

ISBN-13: 0821850385

DOWNLOAD EBOOK

Presents an understanding of the sorts of problems one studies in group actions and the methods used to study such problems. This book features articles based upon lectures at the 1983 AMS-IMS-SIAM Joint Summer Research Conference, Group Actions on Manifolds, held at the University of Colorado.