Optimality Conditions: Abnormal and Degenerate Problems

Optimality Conditions: Abnormal and Degenerate Problems

Author: Aram Arutyunov

Publisher: Springer Science & Business Media

Published: 2000-10-31

Total Pages: 318

ISBN-13: 9780792366553

DOWNLOAD EBOOK

This book is devoted to one of the main questions of the theory of extremal problems, namely, to necessary and sufficient extremality conditions. The book consists of four parts. First, the abstract minimization problem with constraints is studied. The next chapter is devoted to one of the most important classes of extremal problems, the optimal control problem. Next, one of the main objects of the calculus of variations is studied, the integral quadratic form. Finally, local properties of smooth nonlinear mappings in a neighborhood of an abnormal point will be discussed. Audience: The book is intended for researchers interested in optimization problems. The book may also be useful for advanced students and postgraduate students.


Introduction to Optimum Design

Introduction to Optimum Design

Author: Jasbir Singh Arora

Publisher: Academic Press

Published: 2011-08-12

Total Pages: 897

ISBN-13: 012381376X

DOWNLOAD EBOOK

Introduction to Optimum Design, Third Edition describes an organized approach to engineering design optimization in a rigorous yet simplified manner. It illustrates various concepts and procedures with simple examples and demonstrates their applicability to engineering design problems. Formulation of a design problem as an optimization problem is emphasized and illustrated throughout the text. Excel and MATLAB® are featured as learning and teaching aids. - Basic concepts of optimality conditions and numerical methods are described with simple and practical examples, making the material highly teachable and learnable - Includes applications of optimization methods for structural, mechanical, aerospace, and industrial engineering problems - Introduction to MATLAB Optimization Toolbox - Practical design examples introduce students to the use of optimization methods early in the book - New example problems throughout the text are enhanced with detailed illustrations - Optimum design with Excel Solver has been expanded into a full chapter - New chapter on several advanced optimum design topics serves the needs of instructors who teach more advanced courses


Calculus of Variations and Optimal Control Theory

Calculus of Variations and Optimal Control Theory

Author: Daniel Liberzon

Publisher: Princeton University Press

Published: 2012

Total Pages: 255

ISBN-13: 0691151873

DOWNLOAD EBOOK

This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control


Introduction to Algorithms for Data Mining and Machine Learning

Introduction to Algorithms for Data Mining and Machine Learning

Author: Xin-She Yang

Publisher: Academic Press

Published: 2019-06-17

Total Pages: 190

ISBN-13: 0128172177

DOWNLOAD EBOOK

Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data. Presents an informal, theorem-free approach with concise, compact coverage of all fundamental topics Includes worked examples that help users increase confidence in their understanding of key algorithms, thus encouraging self-study Provides algorithms and techniques that can be implemented in any programming language, with each chapter including notes about relevant software packages


Constrained Extrema Introduction to the Differentiable Case with Economic Applications

Constrained Extrema Introduction to the Differentiable Case with Economic Applications

Author: M.A. El-Hodiri

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 136

ISBN-13: 3642806570

DOWNLOAD EBOOK

These notes are the result of an interrupted sequence of seminars on optimiza tion theory with economic applications starting in 1964-1965. This is mentioned by way of explaining the uneven style that pervades them. Lately I have been using the notes for a two semester course on the subject for graduate students in economics. Except for the introductory survey, the notes are intended to provide an appetizer to more sophisticated aspects of optimization theory and economic theory. The notes are divided into three parts. Part I collects most of the results on constrained extremf! of differentiable functionals on finite and not so finite dimensional spaces. It is to be used as a reference and as a place to find credits to various authors whose ideas we report. Part II is concerned with finite dimensional problems and is written in detail. Needless to say, my contributions are marginal. The economic examples are well known and are presented by way of illustrating the theory. Part III is devoted to variational problems leading to a discussion of some optimal control problems. There is a vast amount of literature on these problems and I tried to limit my intrusions to explaining some of the obvious steps that are usually left out. I have borrowed heavily from Akhiezer [ 1], Berkovitz [ 7], Bliss [lOJ and Pars [40J. The economic applications represent some of my work and are presented in the spirit of illustration.


Analysis and Geometry in Control Theory and its Applications

Analysis and Geometry in Control Theory and its Applications

Author: Piernicola Bettiol

Publisher: Springer

Published: 2015-09-01

Total Pages: 242

ISBN-13: 3319069179

DOWNLOAD EBOOK

Since the 1950s control theory has established itself as a major mathematical discipline, particularly suitable for application in a number of research fields, including advanced engineering design, economics and the medical sciences. However, since its emergence, there has been a need to rethink and extend fields such as calculus of variations, differential geometry and nonsmooth analysis, which are closely tied to research on applications. Today control theory is a rich source of basic abstract problems arising from applications, and provides an important frame of reference for investigating purely mathematical issues. In many fields of mathematics, the huge and growing scope of activity has been accompanied by fragmentation into a multitude of narrow specialties. However, outstanding advances are often the result of the quest for unifying themes and a synthesis of different approaches. Control theory and its applications are no exception. Here, the interaction between analysis and geometry has played a crucial role in the evolution of the field. This book collects some recent results, highlighting geometrical and analytical aspects and the possible connections between them. Applications provide the background, in the classical spirit of mutual interplay between abstract theory and problem-solving practice.


Functional Calculus

Functional Calculus

Author: Kamal Shah

Publisher: BoD – Books on Demand

Published: 2020-06-17

Total Pages: 204

ISBN-13: 1838800077

DOWNLOAD EBOOK

The aim of this book is to present a broad overview of the theory and applications related to functional calculus. The book is based on two main subject areas: matrix calculus and applications of Hilbert spaces. Determinantal representations of the core inverse and its generalizations, new series formulas for matrix exponential series, results on fixed point theory, and chaotic graph operations and their fundamental group are contained under the umbrella of matrix calculus. In addition, numerical analysis of boundary value problems of fractional differential equations are also considered here. In addition, reproducing kernel Hilbert spaces, spectral theory as an application of Hilbert spaces, and an analysis of PM10 fluctuations and optimal control are all contained in the applications of Hilbert spaces. The concept of this book covers topics that will be of interest not only for students but also for researchers and professors in this field of mathematics. The authors of each chapter convey a strong emphasis on theoretical foundations in this book.