Second Harmonic Generation Imaging

Second Harmonic Generation Imaging

Author: Francesco S. Pavone

Publisher: Taylor & Francis

Published: 2016-04-19

Total Pages: 465

ISBN-13: 1439849153

DOWNLOAD EBOOK

Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical a


Optical Imaging and Microscopy

Optical Imaging and Microscopy

Author: Peter Török

Publisher: Springer

Published: 2013-06-05

Total Pages: 402

ISBN-13: 3540460225

DOWNLOAD EBOOK

This text draws together the fields of optical microscopy and optical data storage, in a unique compilation of valuable and novel scientific work that is scarcely to be found elsewhere. The contributing authors are unquestioned leaders of their respective fields.


Video Microscopy

Video Microscopy

Author: Shinya Inoue

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 600

ISBN-13: 1475769253

DOWNLOAD EBOOK

Ever since television became practical in the early 1950s, closed-circuit television (CCTV) in conjunction with the light microscope has provided large screen display, raised image contrast, and made the images formed by ultraviolet and infrared rays visible. With the introduction of large-scale integrated circuits in the last decade, TV equipment has improved by leaps and bounds, as has its application in microscopy. With modem CCTV, sometimes with the help of digital computers, we can distill the image from a scene that appears to be nothing but noise; capture fluorescence too dim to be seen; visualize structures far below the limit of resolution; crispen images hidden in fog; measure, count, and sort objects; and record in time-lapsed and high-speed sequences through the light microscope without great difficulty. In fact, video is becoming indispensable for harnessing the fullest capacity of the light microscope, a capacity that itself is much greater than could have been envisioned just a few years ago. The time seemed ripe then to review the basics of video, and of microscopy, and to examine how the two could best be combined to accomplish these tasks. The Marine Biological Laboratory short courses on Analytical and Quantitative Light Microscopy in Biology, Medicine, and the Materials Sciences, and the many inquiries I received on video microscopy, supported such an effort, and Kirk Jensen of Plenum Press persuaded me of its worth.


Handbook of Biomedical Nonlinear Optical Microscopy

Handbook of Biomedical Nonlinear Optical Microscopy

Author: Barry R. Masters

Publisher: Oxford University Press

Published: 2008-05-19

Total Pages: 895

ISBN-13: 0198036825

DOWNLOAD EBOOK

The Handbook of Biomedical Nonlinear Optical Microscopy provides comprehensive treatment of the theories, techniques, and biomedical applications of nonlinear optics and microscopy for cell biologists, life scientists, biomedical engineers, and clinicians. The chapters are separated into basic and advanced sections, and provide both textual and graphical illustrations of all key concepts. The more basic sections are aimed at life scientists without advanced training in physics and mathematics, and tutorials are provided for the more challenging sections. The first part of the Handbook introduces the historical context of nonlinear microscopy. The second part presents the nonlinear optical theory of two- and multiphoton excited fluorescence (TPE, MPE) spectroscopy, second and third harmonic generation (SHG, THG) spectroscopy, and coherent anti-Stokes Raman spectroscopy (CARS). The third part introduces modern microscopic and spectroscopic instrumentation and techniques that are based on nonlinear optics. The fourth part provides key applications of nonlinear microscopy to the biomedical area: neurobiology, immunology, tumor biology, developmental biology, dermatology, and cellular metabolism. There are also chapters on nonlinear molecular probes, cellular damage, and nanoprocessing.


Nanoscale Photonic Imaging

Nanoscale Photonic Imaging

Author: Tim Salditt

Publisher: Springer Nature

Published: 2020-06-09

Total Pages: 634

ISBN-13: 3030344134

DOWNLOAD EBOOK

This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.


Applied Nonlinear Optics

Applied Nonlinear Optics

Author: Frits Zernike

Publisher: Courier Corporation

Published: 2006-01-01

Total Pages: 212

ISBN-13: 048645360X

DOWNLOAD EBOOK

Directed toward physicists and engineers interested in the device applications enabled by nonlinear optics, this text is suitable for advanced undergraduates and graduate students. Its content is presented entirely on a classical basis and requires only an elementary knowledge of quantum mechanics. The authors demonstrate how real laboratory situations can diverge from ideal theory, acquainting readers with the kinds of problems common to construction of a nonlinear device. They also offer a detailed discussion of the practical problems and characteristics of nonlinear materials, as well as the selection procedures necessary to ensure the use of good material. Their treatment begins with an introduction to the theories of linear and nonlinear optics, along with the basic ideas behind them. Succeeding chapters explore phase matching and nonlinear materials, followed by detailed treatments of second-harmonic generation, parametric up-conversion, and optical parametric amplification and oscillation. Appendixes offer a comprehensive list of materials and their properties; the text concludes with references and an index.


Organic Semiconductors for Optoelectronics

Organic Semiconductors for Optoelectronics

Author: Hiroyoshi Naito

Publisher: John Wiley & Sons

Published: 2021-08-02

Total Pages: 388

ISBN-13: 1119146100

DOWNLOAD EBOOK

Comprehensive coverage of organic electronics, including fundamental theory, basic properties, characterization methods, device physics, and future trends Organic semiconductor materials have vast commercial potential for a wide range of applications, from self-emitting OLED displays and solid-state lighting to plastic electronics and organic solar cells. As research in organic optoelectronic devices continues to expand at an unprecedented rate, organic semiconductors are being applied to flexible displays, biosensors, and other cost-effective green devices in ways not possible with conventional inorganic semiconductors. Organic Semiconductors for Optoelectronics is an up-to-date review of the both the fundamental theory and latest research and development advances in organic semiconductors. Featuring contributions from an international team of experts, this comprehensive volume covers basic properties of organic semiconductors, characterization techniques, device physics, and future trends in organic device development. Detailed chapters provide key information on the device physics of organic field-effect transistors, organic light-emitting diodes, organic solar cells, organic photosensors, and more. This authoritative resource: Provides a clear understanding of the optoelectronic properties of organic semiconductors and their influence to overall device performance Explains the theories behind relevant mechanisms in organic semiconducting materials and in organic devices Discusses current and future trends and challenges in the development of organic optoelectronic devices Reviews electronic properties, device mechanisms, and characterization techniques of organic semiconducting materials Covers theoretical concepts of optical properties of organic semiconductors including fluorescent, phosphorescent, and thermally-assisted delayed fluorescent emitters An important new addition to the Wiley Series in Materials for Electronic & Optoelectronic Applications, Organic Semiconductors for Optoelectronics bridges the gap between advanced books and undergraduate textbooks on semiconductor physics and solid-state physics. It is essential reading for academic researchers, graduate students, and industry professionals involved in organic electronics, materials science, thin film devices, and optoelectronics research and development.


Make Life Visible

Make Life Visible

Author: Yoshiaki Toyama

Publisher: Springer Nature

Published: 2019-10-02

Total Pages: 285

ISBN-13: 9811379084

DOWNLOAD EBOOK

This open access book describes marked advances in imaging technology that have enabled the visualization of phenomena in ways formerly believed to be completelyimpossible. These technologies have made major contributions to the elucidation of the pathology of diseases as well as to their diagnosis and therapy. The volume presents various studies from molecular imaging to clinical imaging. It also focuses on innovative, creative, advanced research that gives full play to imaging technology inthe broad sense, while exploring cross-disciplinary areas in which individual research fields interact and pursuing the development of new techniques where they fuse together. The book is separated into three parts, the first of which addresses the topic of visualizing and controlling molecules for life. Th e second part is devoted to imaging of disease mechanisms, while the final part comprises studies on the application of imaging technologies to diagnosis and therapy. Th e book contains the proceedings of the 12th Uehara International Symposium 2017, “Make Life Visible” sponsored by the Uehara Memorial Foundation and held from June 12 to 14, 2017. It is written by leading scientists in the field and is an open access publication under a CC BY 4.0 license.


Introduction to Biophotonics

Introduction to Biophotonics

Author: Paras N. Prasad

Publisher: John Wiley & Sons

Published: 2004-01-16

Total Pages: 622

ISBN-13: 0471465399

DOWNLOAD EBOOK

Paras Prasad’s text provides a basic knowledge of a broad range of topics so that individuals in all disciplines can rapidly acquire the minimal necessary background for research and development in biophotonics. Introduction to Biophotonics serves as both a textbook for education and training as well as a reference book that aids research and development of those areas integrating light, photonics, and biological systems. Each chapter contains a topic introduction, a review of key data, and description of future directions for technical innovation. Introduction to Biophotonics covers the basic principles of Optics Optical spectroscopy Microscopy Each section also includes illustrated examples and review questions to test and advance the reader’s knowledge. Sections on biosensors and chemosensors, important tools for combating biological and chemical terrorism, will be of particular interest to professionals in toxicology and other environmental disciplines. Introduction to Biophotonics proves a valuable reference for graduate students and researchers in engineering, chemistry, and the life sciences.