Search for New Physics in tt ̅ Final States with Additional Heavy-Flavor Jets with the ATLAS Detector

Search for New Physics in tt ̅ Final States with Additional Heavy-Flavor Jets with the ATLAS Detector

Author: Javier Montejo Berlingen

Publisher: Springer

Published: 2016-07-20

Total Pages: 288

ISBN-13: 3319410512

DOWNLOAD EBOOK

This doctoral thesis focuses on the search for new phenomena in top-antitop quark (tt) final states with additional b-quark jets at the LHC. It uses the full Run 1 dataset collected by the ATLAS experiment in proton-proton collisions at √s=8 TeV. The final state of interest consists of an isolated lepton, a neutrino and at least six jets with at least four b-tagged jets, a challenging experimental signature owing to the large background from tt+heavy-flavor production. This final state is characteristic of ttH production, with the Higgs boson decaying into bb, a process that allows direct probing of the top-Higgs Yukawa coupling. This signature is also present in many extensions of the Standard Model that have been proposed as solutions to the hierarchy problem, such as supersymmetry or composite Higgs models, which predict the pair production of bosonic or fermionic top quark partners, or the anomalous production of four-top-quark events. All these physics processes have been searched for using an ambitious search strategy that has been developed on the basis of a combination of state-of-art theoretical predictions and a sophisticated statistical analysis to constrain in-situ the large background uncertainties. As a result, the most restrictive bounds to date on the above physics processes have been obtained.


Search for New Phenomena in Top-Antitop Quarks Final States with Additional Heavy-Flavour Jets with the ATLAS Detector

Search for New Phenomena in Top-Antitop Quarks Final States with Additional Heavy-Flavour Jets with the ATLAS Detector

Author: Daiki Yamaguchi

Publisher: Springer Nature

Published: 2019-10-30

Total Pages: 279

ISBN-13: 9811509328

DOWNLOAD EBOOK

This book reports on the search for a new heavy particle, the Vector-Like Top quark (VLT), in the Large Hadron Collider (LHC) at CERN. The signal process is the pair production of VLT decaying into a Higgs boson and top quark (TT→Ht+X, X=Ht, Wb, Zt). The signal events result in top–antitop quarks final states with additional heavy flavour jets. The book summarises the analysis of the data collected with the ATLAS detector in 2015 and 2016. In order to better differentiate between signals and backgrounds, exclusive taggers of top quark and Higgs boson were developed and optimised for VLT signals. These efforts improved the sensitivity by roughly 30%, compared to the previous analysis. The analysis outcomes yield the strongest constraints on parameter space in various BSM theoretical models. In addition, the book addresses detector operation and the evaluation of tracking performance. These efforts are essential to properly collecting dense events and improving the accuracy of the reconstructed objects that are used for particle identification. As such, they represent a valuable contribution to data analysis in extremely dense environments.


Searching for Squarks

Searching for Squarks

Author: Samuel Jones

Publisher: Springer Nature

Published: 2020-08-27

Total Pages: 223

ISBN-13: 3030542882

DOWNLOAD EBOOK

This thesis focuses on searches for squarks with the ATLAS detector in "compressed" scenarios where the scalar top is very close in mass to the lightest supersymmetric particle. These models are theoretically appealing because the presence of a quasi-degenerate scalar top enhances the self-annihilation cross-section of the lightest supersymmetric particle, acting therefore as a regulator of the dark matter relic density. Two main analyses are presented: the first is a search for scalar tops decaying to charm quarks. The identification of jets originating from the charm quark is very challenging due to its short lifetime. The calibration of tools for charm-tagging has paved the way to measuring the decay of the Higgs boson to pairs of charm quarks. The second analysis presented is the development of a novel technique for reconstructing low momentum b-hadrons. This tool has enabled the ATLAS collaboration to explore topologies that were previously inaccessible.


Searches for Supersymmetric Particles in Final States with Multiple Top and Bottom Quarks with the Atlas Detector

Searches for Supersymmetric Particles in Final States with Multiple Top and Bottom Quarks with the Atlas Detector

Author: Chiara Rizzi

Publisher: Springer Nature

Published: 2020-09-01

Total Pages: 279

ISBN-13: 3030528774

DOWNLOAD EBOOK

This PhD thesis documents two of the highest-profile searches for supersymmetry performed at the ATLAS experiment using up to 80/fb of proton-proton collision data at a center-of-mass energy of 13 TeV delivered by the Large Hadron Collider (LHC) during its Run 2 (2015-2018). The signals of interest feature a high multiplicity of jets originating from the hadronisation of b-quarks and large missing transverse momentum, which constitutes one of the most promising final state signatures for discovery of new phenomena at the LHC. The first search is focused on the strong production of a pair of gluinos, with each gluino decaying into a neutralino and a top-antitop-quark pair or a bottom-antibottom-quark pair. The second search targets the pair production of higgsinos, with each higgsino decaying into a gravitino and a Higgs boson, which in turn is required to decay into a bottom-antibottom-quark pair. Both searches employ state-of-the-art experimental techniques and analysis strategies at the LHC, resulting in some of the most restrictive bounds available to date on the masses of the gluino,neutralino, and higgsino in the context of the models explored.


Higgs Boson Decays into a Pair of Bottom Quarks

Higgs Boson Decays into a Pair of Bottom Quarks

Author: Cecilia Tosciri

Publisher: Springer Nature

Published: 2021-10-22

Total Pages: 171

ISBN-13: 3030879380

DOWNLOAD EBOOK

The discovery in 2012 of the Higgs boson at the Large Hadron Collider (LHC) represents a milestone for the Standard Model (SM) of particle physics. Most of the SM Higgs production and decay rates have been measured at the LHC with increased precision. However, despite its experimental success, the SM is known to be only an effective manifestation of a more fundamental description of nature. The scientific research at the LHC is strongly focused on extending the SM by searching, directly or indirectly, for indications of New Physics. The extensive physics program requires increasingly advanced computational and algorithmic techniques. In the last decades, Machine Learning (ML) methods have made a prominent appearance in the field of particle physics, and promise to address many challenges faced by the LHC. This thesis presents the analysis that led to the observation of the SM Higgs boson decay into pairs of bottom quarks. The analysis exploits the production of a Higgs boson associated with a vector boson whose signatures enable efficient triggering and powerful background reduction. The main strategy to maximise the signal sensitivity is based on a multivariate approach. The analysis is performed on a dataset corresponding to a luminosity of 79.8/fb collected by the ATLAS experiment during Run-2 at a centre-of-mass energy of 13 TeV. An excess of events over the expected background is found with an observed (expected) significance of 4.9 (4.3) standard deviation. A combination with results from other \Hbb searches provides an observed (expected) significance of 5.4 (5.5). The corresponding ratio between the signal yield and the SM expectation is 1.01 +- 0.12 (stat.)+ 0.16-0.15(syst.). The 'observation' analysis was further extended to provide a finer interpretation of the V H(H → bb) signal measurement. The cross sections for the VH production times the H → bb branching ratio have been measured in exclusive regions of phase space. These measurements are used to search for possible deviations from the SM with an effective field theory approach, based on anomalous couplings of the Higgs boson. The results of the cross-section measurements, as well as the constraining of the operators that affect the couplings of the Higgs boson to the vector boson and the bottom quarks, have been documented and discussed in this thesis. This thesis also describes a novel technique for the fast simulation of the forward calorimeter response, based on similarity search methods. Such techniques constitute a branch of ML and include clustering and indexing methods that enable quick and efficient searches for vectors similar to each other. The new simulation approach provides optimal results in terms of detector resolution response and reduces the computational requirements of a standard particles simulation.


Search for Dark Matter with the ATLAS Detector

Search for Dark Matter with the ATLAS Detector

Author: Johanna Gramling

Publisher: Springer

Published: 2018-08-01

Total Pages: 290

ISBN-13: 3319950169

DOWNLOAD EBOOK

This book discusses searches for Dark Matter at the CERN’s LHC, the world’s most powerful accelerator. It introduces the relevant theoretical framework and includes an in-depth discussion of the Effective Field Theory approach to Dark Matter production and its validity, as well as an overview of the formalism of Simplified Dark Matter models. Despite overwhelming astrophysical evidence for Dark Matter and numerous experimental efforts to detect it, the nature of Dark Matter still remains a mystery and has become one of the hottest research topics in fundamental physics. Two searches for Dark Matter are presented, performed on data collected with the ATLAS experiment. They analyze missing-energy final states with a jet or with top quarks. The analyses are explained in detail, and the outcomes and their interpretations are discussed, also in view of the precedent analysis of theoretical approaches. Given its depth of coverage, the book represents an excellent reference guide for all physicists interested in understanding the theoretical and experimental considerations relevant to Dark Matter searches at the LHC.


Third generation SUSY and t ̄t +Z production

Third generation SUSY and t ̄t +Z production

Author: Josh McFayden

Publisher: Springer

Published: 2014-06-06

Total Pages: 190

ISBN-13: 3319071912

DOWNLOAD EBOOK

This thesis describes searches for new particles predicted by the super symmetry (SUSY) theory, a theory extending beyond the current Standard Model of particle physics, using the ATLAS detector at the CERN Large Hadron Collider. The thesis focuses on searches for stop and sbottom squarks, the SUSY partners of the top and bottom quarks, which are expected to be lighter than the partners of the first and second generation quarks and therefore good candidates for the first evidence of SUSY. It describes novel techniques for estimating and rejecting the Standard-Model backgrounds to searches for these particles. It also includes an independent analysis seeking to constrain the Standard Model ttZ background process, which also represents the first ATLAS search for this rare process at the LHC. The stop squark analysis described, with substantial leading contributions from the author, is the first search for these particles at the LHC to use the jets plus missing transverse energy plus 0-lepton signature and provides the world's best limits on the stop mass for light neutralino LSPs. All in all, the thesis describes three different world-leading analyses in both Standard Model and SUSY physics and therefore represents a major contribution to the field.


A Beauty-ful Boson

A Beauty-ful Boson

Author: Giulia Di Gregorio

Publisher: Springer Nature

Published: 2023-01-01

Total Pages: 229

ISBN-13: 3031200136

DOWNLOAD EBOOK

The analysis described in this thesis is the search for the Higgs boson, decaying into bb pair, in the associated production with a vector boson, in the extreme Higgs boson transverse momentum region where the Higgs boson is reconstructed using the large-R jet technique. The use of the large-R jets allows to add a part of the phase space unexplored so far, which is particularly sensitive to possible new physics. The analysed data have been collected at LHC by the ATLAS detector between 2015 and 2018 at a centre-of-mass energy of √s = 13 TeV. The same dataset has been used to perform the differential pp → ZH and pp → WH cross-section measurements used to extract the information on the Higgs couplings and to put limits on Beyond the Standard Model effects. Furthermore the analysis has been re-used to perform a cross-section measurement of the diboson ZZ and WZ processes because the diboson and the Higgs processes have a similar topology. For the first time the ZZ(bb) and WZ(bb) cross-sections are measured at √s = 13 TeV and the observed cross-section measurements are consistent with the Standard Model predictions.