The recent observation of the Higgs boson has been hailed as the scientific discovery of the century and led to the 2013 Nobel Prize in physics. This book describes the detailed science behind the decades-long search for this elusive particle at the Large Electron Positron Collider at CERN and at the Tevatron at Fermilab and its subsequent discovery and characterization at the Large Hadron Collider at CERN. Written by physicists who played leading roles in this epic search and discovery, this book is an authoritative and pedagogical exposition of the portrait of the Higgs boson that has emerged from a large number of experimental measurements. As the first of its kind, this book should be of interest to graduate students and researchers in particle physics.
The theoretical foundations of the Standard Model of elementary particles relies on the existence of the Higgs boson, a particle which has been revealed for the first time by the experiments run at the Large Hadron Collider (LHC) in 2012. As the Higgs boson is an unstable particle, its search strategies were based on its decay products. In this thesis, Francesco Pandolfi conducted a search for the Higgs boson in the H → ZZ → l + l - qq Decay Channel with 4.6 fb -1 of 7 TeV proton-proton collision data collected by the Compact Muon Solenoid (CMS) experiment. The presence of jets in the final state poses a series of challenges to the experimenter: both from a technical point of view, as jets are complex objects and necessitate of ad-hoc reconstruction techniques, and from an analytical one, as backgrounds with jets are copious at hadron colliders, therefore analyses must obtain high degrees of background rejection in order to achieve competitive sensitivity. This is accomplished by following two directives: the use of an angular likelihood discriminant, capable of discriminating events likely to originate from the decay of a scalar boson from non-resonant backgrounds, and by using jet parton flavor tagging, selecting jets compatible with quark hadronization and discarding jets more likely to be initiated by gluons. The events passing the selection requirements in 4.6 fb -1 of data collected by the CMS detector are examined, in the search of a possible signal compatible with the decay of a heavy Higgs boson. The thesis describes the statistical tools and the results of this analysis. This work is a paradigm for studies of the Higgs boson with final states with jets. The non-expert physicists will enjoy a complete and eminently readable description of a proton-proton collider analysis. At the same time, the expert reader will learn the details of the searches done with jets at CMS.
The book gives a quite complete and up-to-date picture of the Standard Theory with an historical perspective, with a collection of articles written by some of the protagonists of present particle physics. The theoretical developments are described together with the most up-to-date experimental tests, including the discovery of the Higgs Boson and the measurement of its mass as well as the most precise measurements of the top mass, giving the reader a complete description of our present understanding of particle physics.
A fascinating tour of particle physics from Nobel Prize winner Leon Lederman. At the root of particle physics is an invincible sense of curiosity. Leon Lederman embraces this spirit of inquiry as he moves from the Greeks' earliest scientific observations to Einstein and beyond to chart this unique arm of scientific study. His survey concludes with the Higgs boson, nicknamed the God Particle, which scientists hypothesize will help unlock the last secrets of the subatomic universe, quarks and all--it's the dogged pursuit of this almost mystical entity that inspires Lederman's witty and accessible history.
This proceedings is the fifth in the series of Latin American symposiums focusing on the development, refinement and applications of high energy physics. As the principal meetings for the physics community in Latin America, it encourages collaborations and the exchange of ideas with the international physics communities. This particular symposium was also a dedication to the memory of Dr Luis Masperi. Sample Chapter(s). Chapter 1: Round Table: Collaborations in Physics in Latin America (206 KB). Contents: Neutrino Phenomenology (E Roulet); QCD Evolution in Dense Medium (M B Gay Ducati); Recent Results from PHOBOS at RHIC (E Garcia); Supernova Neutrinos and the Absolute Scale of Neutrino Masses OCo A Bayesian Approach (E Nardi); Variable-Mass Dark Matter and the Age of the Universe (U Franca & R Rosenfeld); Predications for Single Spin Asymmetries in Inclusive Reactions Involving Photons (V Gupta et al.); The MINOS Experiment (M Sanchez); Energy Spectrum of Surviving Protons (R Calle et al.); Consequences on the Neutrino Mixing Matrix from Two Zero Textures in the Neutrino Mass Matrix (L Stucchi et al.); Spinor Realization of the Skyrme Model (R Ochoa Jimenez & Yu P Rybakov); and other papers. Readership: Researchers, graduate students and advanced undergraduates in physics, and non-experts interested in high energy physics."
This Thesis describes the first measurement of, and constraints on, Higgs boson production in the vector boson fusion mode, where the Higgs decays to b quarks (the most common decay channel), at the LHC. The vector boson fusion mode, in which the Higgs is produced simultaneously with a pair of quark jets, provides an unparalleled opportunity to study the detailed properties of the Higgs, including the possibility of parity and CP violation, as well as its couplings and mass. It thus opens up this new field of study for precision investigation as the LHC increases in energy and intensity, leading the way to this new and exciting arena of precision Higgs research.
High Energy Physics 99 contains the 18 invited plenary presentations and 250 contributions to parallel sessions presented at the International Europhysics Conference on High Energy Physics. The book provides a comprehensive survey of the latest developments in high energy physics. Topics discussed include hard high energy, structure functions, soft interactions, heavy flavor, the standard model, hadron spectroscopy, neutrino masses, particle astrophysics, field theory, and detector development.