This book addresses one of the most intriguing mysteries of our universe: the nature of dark matter. The results presented here mark a significant and substantial contribution to the search for new physics, in particular for new particles that couple to dark matter. The first analysis presented is a search for heavy new particles that decay into pairs of hadronic jets (dijets). This pioneering analysis explores unprecedented dijet invariant masses, reaching nearly 7 TeV, and sets constraints on several important new physics models. The two subsequent analyses focus on the difficult low dijet mass region, down to 200 GeV, and employ a novel technique to efficiently gather low-mass dijet events. The results of these analyses transcend the long-standing constraints on dark matter mediator particles set by several existing experiments.
This book introduces the reader to the field of jet substructure, starting from the basic considerations for capturing decays of boosted particles in individual jets, to explaining state-of-the-art techniques. Jet substructure methods have become ubiquitous in data analyses at the LHC, with diverse applications stemming from the abundance of jets in proton-proton collisions, the presence of pileup and multiple interactions, and the need to reconstruct and identify decays of highly-Lorentz boosted particles. The last decade has seen a vast increase in our knowledge of all aspects of the field, with a proliferation of new jet substructure algorithms, calculations and measurements which are presented in this book. Recent developments and algorithms are described and put into the larger experimental context. Their usefulness and application are shown in many demonstrative examples and the phenomenological and experimental effects influencing their performance are discussed. A comprehensive overview is given of measurements and searches for new phenomena performed by the ATLAS and CMS Collaborations. This book shows the impressive versatility of jet substructure methods at the LHC.
In this dissertation, we revisit the prospects of a strongly interacting theory for the Electroweak Symmetry Breaking Sector of the Standard Model, after the discovery of a Higgs-like boson at 125GeV. As the LHC constrains new phenomena near the Higgs mass, it is natural to assume that the new scale is of order 1TeV. This mass gap might indicate strongly interacting new physics. This work is of quite general validity and model independence. With only a few parameters at the Lagrangian level, multiple channels (possibly with new physics resonances) are describable, and many BSM theories can be treated. It will be of interest to postgraduate students and researchers, and is accessible to newcomers in the field. Many calculations are given in full detail and there are ample graphical illustrations.
This unique volume contains the materials of the XXIXth International Workshop on High Energy Physics. The content of the volume is much wider than just high-energy physics and actually concerns all the most fundamental areas of modern physics research: high-energy physics proper, gravitation and cosmology. Presentations embrace both theory and experiment.
This book mainly investigates the precision predictions on the signal of new physics at the Large Hadron Collider (LHC) in the perturbative Quantum Chromodynamics (QCD) scheme. The potential of the LHC to discover the signal of dark matter associated production with a photon is studied after including next-to-leading order QCD corrections. The factorization and resummation of t-channel top quark transverse momentum distribution in the standard model at both the Tevatron and the LHC with soft-collinear effective theory are presented. The potential of the early LHC to discover the signal of monotops is discussed. These examples illustrate the method of searching for new physics beyond what is known today with high precision.
This volume contains contributions to the workshop, which was largely focused on the strong coupling gauge theories in search for theories beyond the standard model, particularly, the LHC experiments and lattice studies of conformal fixed point. The main topics include walking technicolor and the role of conformality in view of the 125 GeV Higgs as a light composite Higgs (technidilaton, and other composite Higgs, etc.). Nonperturbative studies like lattice simulations and stringy/holographic approaches are extensively discussed in close relation to the phenomenological studies.After the discovery of 125 GeV Higgs at LHC, the central issue of particle physics is now to reveal the dynamical origin of the Higgs itself. One of the possibilities would be the composite Higgs based on the strong coupling gauge theory in the TeV region, such as the technidilaton predicted in walking technicolor with infrared conformality. The volume contains, among others, many of the latest important reports on walking technicolor and related subjects in the general context of conformality, in a way of direct relevance to the LHC phenomenology as well as the lattice studies. It is very timely to study full theoretical implications in the exciting era when the LHC is vigorously working. This volume is of great importance for that purpose.Speakers of 40 talks (plus posters) include K-I Aoki, Y Aoki, K Bamba, E Bennett, R S Chivukula, H Georgi, A Hasenfratz, D-K Hong, K Itoh, D Elander, G Fleming, H Fukano, Y Iwasaki, M Jarvinen, D Kadoh, S Kim, R Kitano, K-I Kondo, J Kuti, D Lin, N Maru, H Matsufuru, S Matsuzaki, K-I Nagai, C Nonaka, H Ohki, E Pallante, M Rho, E Rinaldi, F Sannino, D Schaich, A Shibata, R E Shrock, E H Simmons, K Tuominen, C H Wong, N Yamada, M J S Yang, and K Yamawaki.
This concise primer reviews the latest developments in the field of jets. Jets are collinear sprays of hadrons produced in very high-energy collisions, e.g. at the LHC or at a future hadron collider. They are essential to and ubiquitous in experimental analyses, making their study crucial. At present LHC energies and beyond, massive particles around the electroweak scale are frequently produced with transverse momenta that are much larger than their mass, i.e., boosted. The decay products of such boosted massive objects tend to occupy only a relatively small and confined area of the detector and are observed as a single jet. Jets hence arise from many different sources and it is important to be able to distinguish the rare events with boosted resonances from the large backgrounds originating from Quantum Chromodynamics (QCD). This requires familiarity with the internal properties of jets, such as their different radiation patterns, a field broadly known as jet substructure. This set of notes begins by providing a phenomenological motivation, explaining why the study of jets and their substructure is of particular importance for the current and future program of the LHC, followed by a brief but insightful introduction to QCD and to hadron-collider phenomenology. The next section introduces jets as complex objects constructed from a sequential recombination algorithm. In this context some experimental aspects are also reviewed. Since jet substructure calculations are multi-scale problems that call for all-order treatments (resummations), the bases of such calculations are discussed for simple jet quantities. With these QCD and jet physics ingredients in hand, readers can then dig into jet substructure itself. Accordingly, these notes first highlight the main concepts behind substructure techniques and introduce a list of the main jet substructure tools that have been used over the past decade. Analytic calculations are then provided for several families of tools, the goal being to identify their key characteristics. In closing, the book provides an overview of LHC searches and measurements where jet substructure techniques are used, reviews the main take-home messages, and outlines future perspectives.
This book addresses one of the most intriguing mysteries of our universe: the nature of dark matter. The results presented here mark a significant and substantial contribution to the search for new physics, in particular for new particles that couple to dark matter. The first analysis presented is a search for heavy new particles that decay into pairs of hadronic jets (dijets). This pioneering analysis explores unprecedented dijet invariant masses, reaching nearly 7 TeV, and sets constraints on several important new physics models. The two subsequent analyses focus on the difficult low dijet mass region, down to 200 GeV, and employ a novel technique to efficiently gather low-mass dijet events. The results of these analyses transcend the long-standing constraints on dark matter mediator particles set by several existing experiments.
Written by foremost experts, this short book gives a clear description of the physics of quantum black holes. The reader will learn about quantum black holes in four and higher dimensions, primordial black holes, the production of black holes in high energy particle collisions, Hawking radiation, black holes in models of low scale quantum gravity and quantum gravitational aspects of black holes.