One of the greatest scientific challenges of the 21st century is how to master, organize and extract useful knowledge from the overwhelming flow of information made available by today’s data acquisition systems and computing resources. Visualization is the premium means of taking up this challenge. This book is based on selected lectures given by leading experts in scientific visualization during a workshop held at Schloss Dagstuhl, Germany. Topics include user issues in visualization, large data visualization, unstructured mesh processing for visualization, volumetric visualization, flow visualization, medical visualization and visualization systems. The book contains more than 350 color illustrations.
This book is devoted to the emerging field of integrated visual knowledge discovery that combines advances in artificial intelligence/machine learning and visualization/visual analytic. A long-standing challenge of artificial intelligence (AI) and machine learning (ML) is explaining models to humans, especially for live-critical applications like health care. A model explanation is fundamentally human activity, not only an algorithmic one. As current deep learning studies demonstrate, it makes the paradigm based on the visual methods critically important to address this challenge. In general, visual approaches are critical for discovering explainable high-dimensional patterns in all types in high-dimensional data offering "n-D glasses," where preserving high-dimensional data properties and relations in visualizations is a major challenge. The current progress opens a fantastic opportunity in this domain. This book is a collection of 25 extended works of over 70 scholars presented at AI and visual analytics related symposia at the recent International Information Visualization Conferences with the goal of moving this integration to the next level. The sections of this book cover integrated systems, supervised learning, unsupervised learning, optimization, and evaluation of visualizations. The intended audience for this collection includes those developing and using emerging AI/machine learning and visualization methods. Scientists, practitioners, and students can find multiple examples of the current integration of AI/machine learning and visualization for visual knowledge discovery. The book provides a vision of future directions in this domain. New researchers will find here an inspiration to join the profession and to be involved for further development. Instructors in AI/ML and visualization classes can use it as a supplementary source in their undergraduate and graduate classes.
The objective of this book is to introduce the basic concepts of big data computing and then to describe the total solution of big data problems using HPCC, an open-source computing platform. The book comprises 15 chapters broken into three parts. The first part, Big Data Technologies, includes introductions to big data concepts and techniques; big data analytics; and visualization and learning techniques. The second part, LexisNexis Risk Solution to Big Data, focuses on specific technologies and techniques developed at LexisNexis to solve critical problems that use big data analytics. It covers the open source High Performance Computing Cluster (HPCC Systems®) platform and its architecture, as well as parallel data languages ECL and KEL, developed to effectively solve big data problems. The third part, Big Data Applications, describes various data intensive applications solved on HPCC Systems. It includes applications such as cyber security, social network analytics including fraud, Ebola spread modeling using big data analytics, unsupervised learning, and image classification. The book is intended for a wide variety of people including researchers, scientists, programmers, engineers, designers, developers, educators, and students. This book can also be beneficial for business managers, entrepreneurs, and investors.
Advanced Data Mining Tools and Methods for Social Computing explores advances in the latest data mining tools, methods, algorithms and the architectures being developed specifically for social computing and social network analysis. The book reviews major emerging trends in technology that are supporting current advancements in social networks, including data mining techniques and tools. It also aims to highlight the advancement of conventional approaches in the field of social networking. Chapter coverage includes reviews of novel techniques and state-of-the-art advances in the area of data mining, machine learning, soft computing techniques, and their applications in the field of social network analysis. - Provides insights into the latest research trends in social network analysis - Covers a broad range of data mining tools and methods for social computing and analysis - Includes practical examples and case studies across a range of tools and methods - Features coding examples and supplementary data sets in every chapter
Explores wide-ranging applications of modeling and simulation techniques that allow readers to conduct research and ask "What if?" Principles of Modeling and Simulation: A Multidisciplinary Approach is the first book to provide an introduction to modeling and simulation techniques across diverse areas of study. Numerous researchers from the fields of social science, engineering, computer science, and business have collaborated on this work to explore the multifaceted uses of computational modeling while illustrating their applications in common spreadsheets. The book is organized into three succinct parts: Principles of Modeling and Simulation provides a brief history of modeling and simulation, outlines its many functions, and explores the advantages and disadvantages of using models in problem solving. Two major reasons to employ modeling and simulation are illustrated through the study of a specific problem in conjunction with the use of related applications, thus gaining insight into complex concepts. Theoretical Underpinnings examines various modeling techniques and introduces readers to two significant simulation concepts: discrete event simulation and simulation of continuous systems. This section details the two primary methods in which humans interface with simulations, and it also distinguishes the meaning, importance, and significance of verification and validation. Practical Domains delves into specific topics related to transportation, business, medicine, social science, and enterprise decision support. The challenges of modeling and simulation are discussed, along with advanced applied principles of modeling and simulation such as representation techniques, integration into the application infrastructure, and emerging technologies. With its accessible style and wealth of real-world examples, Principles of Modeling and Simulation: A Multidisciplinary Approach is a valuable book for modeling and simulation courses at the upper-undergraduate and graduate levels. It is also an indispensable reference for researchers and practitioners working in statistics, mathematics, engineering, computer science, economics, and the social sciences who would like to further develop their understanding and knowledge of the field.
This volume includes the best papers of the IEEE/ACIS International Conference on Computer and Information Science, ICIS 2009, held on June 2009 in Shanghai, China.
The amount of data in our world has been exploding, and analyzing large data sets—so called big data—will become a key basis of competition in business. Statisticians and researchers will be updating their analytic approaches, methods and research to meet the demands created by the availability of big data. The goal of this book is to show how advances in data science have the ability to fundamentally influence and improve organizational science and practice. This book is primarily designed for researchers and advanced undergraduate and graduate students in psychology, management and statistics.
Data visualization is currently a very active and vital area of research, teaching and development. The term unites the established field of scientific visualization and the more recent field of information visualization. The success of data visualization is due to the soundness of the basic idea behind it: the use of computer-generated images to gain insight and knowledge from data and its inherent patterns and relationships. A second premise is the utilization of the broad bandwidth of the human sensory system in steering and interpreting complex processes, and simulations involving data sets from diverse scientific disciplines and large collections of abstract data from many sources. These concepts are extremely important and have a profound and widespread impact on the methodology of computational science and engineering, as well as on management and administration. The interplay between various application areas and their specific problem solving visualization techniques is emphasized in this book. Reflecting the heterogeneous structure of Data Visualization, emphasis was placed on these topics: -Visualization Algorithms and Techniques; -Volume Visualization; -Information Visualization; -Multiresolution Techniques; -Interactive Data Exploration. Data Visualization: The State of the Art presents the state of the art in scientific and information visualization techniques by experts in this field. It can serve as an overview for the inquiring scientist, and as a basic foundation for developers. This edited volume contains chapters dedicated to surveys of specific topics, and a great deal of original work not previously published illustrated by examples from a wealth of applications. The book will also provide basic material for teaching the state of the art techniques in data visualization. Data Visualization: The State of the Art is designed to meet the needs of practitioners and researchers in scientific and information visualization. This book is also suitable as a secondary text for graduate level students in computer science and engineering.
This book contains the best papers of the 10th International Conference on Enterprise Information Systems (ICEIS 2008), held in the city of Barcelona (Spain), organized by the Institute for Systems and Technologies of Information, Control and Com- nication (INSTICC) in cooperation with AAAI and co-sponsored by WfMC. ICEIS has become a major point of contact between research scientists, engineers and practitioners in the area of business applications of information systems. This year, five simultaneous tracks were held, covering different aspects related to enterprise computing, including: “Databases and Information Systems Integration,” “Artificial Intelligence and Decision Support Systems,” “Information Systems Analysis and Specification,” “Software Agents and Internet Computing” and “Human–Computer Interaction.” All tracks focused on real-world applications and highlighted the benefits of information systems and technology for industry and services, thus making a bridge between academia and enterprise. Following the success of 2007, ICEIS 2008 received 665 paper submissions from more than 40 countries. In all, 62 papers were published and presented as full papers, i.e., completed work (8 pages in proceedings / 30-min oral presentations), and 183 papers, reflecting work-in-progress or position papers, were accepted for short pr- entation and another 161 for poster presentation.
This book presents edited and peer-reviewed papers from the 3rd International Workshop on Occultations for Probing Atmosphere and Climate (OPAC-3), held in Austria. It provides a key reference on the current status in the field and looks toward new horizons.