Building Scientific Apparatus

Building Scientific Apparatus

Author: John H. Moore

Publisher: Cambridge University Press

Published: 2009-06-25

Total Pages: 663

ISBN-13: 0521878586

DOWNLOAD EBOOK

Unrivalled in its coverage and unique in its hands-on approach, this guide to the design and construction of scientific apparatus is essential reading for every scientist and student of engineering, and physical, chemical, and biological sciences. Covering the physical principles governing the operation of the mechanical, optical and electronic parts of an instrument, new sections on detectors, low-temperature measurements, high-pressure apparatus, and updated engineering specifications, as well as 400 figures and tables, have been added to this edition. Data on the properties of materials and components used by manufacturers are included. Mechanical, optical, and electronic construction techniques carried out in the lab, as well as those let out to specialized shops, are also described. Step-by-step instruction supported by many detailed figures, is given for laboratory skills such as soldering electrical components, glassblowing, brazing, and polishing.


Open-Source Lab

Open-Source Lab

Author: Joshua M. Pearce

Publisher: Newnes

Published: 2013-10-04

Total Pages: 291

ISBN-13: 012410486X

DOWNLOAD EBOOK

Open-Source Lab: How to Build Your Own Hardware and Reduce Scientific Research Costs details the development of the free and open-source hardware revolution. The combination of open-source 3D printing and microcontrollers running on free software enables scientists, engineers, and lab personnel in every discipline to develop powerful research tools at unprecedented low costs.After reading Open-Source Lab, you will be able to: - Lower equipment costs by making your own hardware - Build open-source hardware for scientific research - Actively participate in a community in which scientific results are more easily replicated and cited - Numerous examples of technologies and the open-source user and developer communities that support them - Instructions on how to take advantage of digital design sharing - Explanations of Arduinos and RepRaps for scientific use - A detailed guide to open-source hardware licenses and basic principles of intellectual property


Investigations

Investigations

Author: Tom Hsu

Publisher: Cambridge Physics Outlet

Published: 2004

Total Pages: 212

ISBN-13: 9781588920584

DOWNLOAD EBOOK

The 87 investigations in this manual are the heart of the program ... Students learn to design experiments, use accurate measuring equipment, and construct and test conclusions based on accurate data.-http://www.cpo.com.


Preliminary Feasibility for Public Research & Development Projects

Preliminary Feasibility for Public Research & Development Projects

Author: Donghun Yoon

Publisher: Emerald Group Publishing

Published: 2021-04-27

Total Pages: 101

ISBN-13: 1801172684

DOWNLOAD EBOOK

Preliminary Feasibility for Public Research & Development Projects explains how to evaluate R&D business by exploring the five key features of policy implication, policy improvement, preliminary feasibility study, R&D evaluation, and R&D strategy and will help develop strategic measures for R&D preliminary feasibility studies.


Major Instruments Of Science And Their Applications To Chemistry

Major Instruments Of Science And Their Applications To Chemistry

Author: Burk R. E

Publisher: Palala Press

Published: 2018-03-02

Total Pages: 0

ISBN-13: 9781379082798

DOWNLOAD EBOOK

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.


Reproducibility and Replicability in Science

Reproducibility and Replicability in Science

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2019-10-20

Total Pages: 257

ISBN-13: 0309486165

DOWNLOAD EBOOK

One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.


Laboratory Life

Laboratory Life

Author: Bruno Latour

Publisher: Princeton University Press

Published: 2013-04-04

Total Pages: 295

ISBN-13: 1400820413

DOWNLOAD EBOOK

This highly original work presents laboratory science in a deliberately skeptical way: as an anthropological approach to the culture of the scientist. Drawing on recent work in literary criticism, the authors study how the social world of the laboratory produces papers and other "texts,"' and how the scientific vision of reality becomes that set of statements considered, for the time being, too expensive to change. The book is based on field work done by Bruno Latour in Roger Guillemin's laboratory at the Salk Institute and provides an important link between the sociology of modern sciences and laboratory studies in the history of science.


America's Lab Report

America's Lab Report

Author: National Research Council

Publisher: National Academies Press

Published: 2006-01-20

Total Pages: 255

ISBN-13: 0309139341

DOWNLOAD EBOOK

Laboratory experiences as a part of most U.S. high school science curricula have been taken for granted for decades, but they have rarely been carefully examined. What do they contribute to science learning? What can they contribute to science learning? What is the current status of labs in our nation�s high schools as a context for learning science? This book looks at a range of questions about how laboratory experiences fit into U.S. high schools: What is effective laboratory teaching? What does research tell us about learning in high school science labs? How should student learning in laboratory experiences be assessed? Do all student have access to laboratory experiences? What changes need to be made to improve laboratory experiences for high school students? How can school organization contribute to effective laboratory teaching? With increased attention to the U.S. education system and student outcomes, no part of the high school curriculum should escape scrutiny. This timely book investigates factors that influence a high school laboratory experience, looking closely at what currently takes place and what the goals of those experiences are and should be. Science educators, school administrators, policy makers, and parents will all benefit from a better understanding of the need for laboratory experiences to be an integral part of the science curriculum-and how that can be accomplished.