This program presents science concepts in areas of biology, earth science, chemistry, and physical science in a logical, easy-to-follow design that challenges without overwhelming. This flexible program consists of 12 student texts that can easily supplement an existing science curriculum or be used as a stand-alone course. Reading Level: 4-5 Interest Level: 6-12
This program presents science concepts in areas of biology, earth science, chemistry, and physical science in a logical, easy-to-follow design that challenges without overwhelming. This flexible program consists of 12 student texts that can easily supplement an existing science curriculum or be used as a stand-alone course. Reading Level: 4-5 Interest Level: 6-12
This program presents science concepts in areas of biology, earth science, chemistry, and physical science in a logical, easy-to-follow design that challenges without overwhelming. This flexible program consists of 12 student texts that can easily supplement an existing science curriculum or be used as a stand-alone course. Reading Level: 4-5 Interest Level: 6-12
This book presents an in-depth analysis of the investment in catalysis basic research by the U.S. Department of Energy (DOE) Office of Basic Energy Sciences (BES) Catalysis Science Program. Catalysis is essential to our ability to control chemical reactions, including those involved in energy transformations. Catalysis is therefore integral to current and future energy solutions, such as the environmentally benign use of hydrocarbons and new energy sources (such as biomass and solar energy) and new efficient energy systems (such as fuel cells). Catalysis for Energy concludes that BES has done well with its investment in catalysis basic research. Its investment has led to a greater understanding of the fundamental catalytic processes that underlie energy applications, and it has contributed to meeting long-term national energy goals by focusing research on catalytic processes that reduce energy consumption or use alternative energy sources. In some areas the impact of the research has been dramatic, while in others, important advances in catalysis science are yet to be made.
Leonardo’s Science Workshop leads children on an interactive adventure through key science concepts by following the multidisciplinary approach of the Renaissance period polymath Leonardo da Vinci: experimenting, creating projects, and exploring how art intersects with science and nature. Photos of Leonardo’s own notebooks, paintings, and drawings provide visual inspiration. More than 500 years ago, Leonardo knew that the fields of science, technology, engineering, art, and mathematics (STEAM) are all connected. The insatiably curious Leonardo examined not just the outer appearance of his art subjects, but the science that explained them. He began his studies as a painter, but his curiosity, diligence, and genius made him also a master sculptor, architect, designer, scientist, engineer, and inventor. The Leonardo’s Workshop series shares this spirit of multidisciplinary inquiry with children through accessible, engaging explanations and hands-on learning. This fascinating book harnesses children’s innate curiosity to explore some of Leonardo’s favorite subjects, including flight, motion, technology design, perspective, and astronomy. After each topic is explained with concepts from physics, chemistry, math, and engineering, kids can experience the principles first-hand with step-by-step STEAM projects. They will explore: The physics of flight by observing birds and experimenting with paper airplane designs The science of motion by building a windup dragonfly Gravitational acceleration with water balloons The movement of electrons by making cereal “dance” Technology design by making paper and fabric using recycled material Scientific perspective by drawing a 3D illusion Insight from other great thinkers—such as Galileo Galilei, James Clerk Maxwell, and Sir Isaac Newton—are woven into the lessons throughout. Introduce vital STEAM skills through visually rich, hands-on learning with Leonardo’s Science Workshop.
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
A basic, non-mathematical textbook for non-science students in secondary school or college. The book is based on Robert Karplus' many years of research on how beginners think about physics. In the "modeling approach" students explore and test simple analog, working and mathematical models for physical phenomena. The models provide a clear, understandable transition to the key principles and theories of physics. The book begins with the basic concepts of relative motion, reference frames, interaction, systems, and a descriptive overview of energy transfer. Subsequent chapters develop the details of temperature and heat, thermal (internal) energy, forces and work, electrical energy and electrical circuits, velocity and acceleration, Newton's Laws, motion near the surface of the earth, periodic and circular motion, celestial mechanics and gravity, pressure and kinetic theory, light and sound, waves, and modern physics (Bohr model and the basics of quantum mechanics). The "Modeling Instruction" approach is used in secondary schools throughout the US (see modeling.asu.edu). This book is especially useful in conjunction with (or as preparation for) the study of chemistry.