Séminaire de Probabilités L

Séminaire de Probabilités L

Author: Catherine Donati-Martin

Publisher: Springer Nature

Published: 2019-11-19

Total Pages: 562

ISBN-13: 3030285359

DOWNLOAD EBOOK

This milestone 50th volume of the "Séminaire de Probabilités" pays tribute with a series of memorial texts to one of its former editors, Jacques Azéma, who passed away in January. The founders of the "Séminaire de Strasbourg", which included Jacques Azéma, probably had no idea of the possible longevity and success of the process they initiated in 1967. Continuing in this long tradition, this volume contains contributions on state-of-art research on Brownian filtrations, stochastic differential equations and their applications, regularity structures, quantum diffusion, interlacing diffusions, mod-Ø convergence, Markov soup, stochastic billiards and other current streams of research.


Elementary Probability

Elementary Probability

Author: David Stirzaker

Publisher: Cambridge University Press

Published: 2003-08-18

Total Pages: 540

ISBN-13: 1139441035

DOWNLOAD EBOOK

Now available in a fully revised and updated second edition, this well established textbook provides a straightforward introduction to the theory of probability. The presentation is entertaining without any sacrifice of rigour; important notions are covered with the clarity that the subject demands. Topics covered include conditional probability, independence, discrete and continuous random variables, basic combinatorics, generating functions and limit theorems, and an introduction to Markov chains. The text is accessible to undergraduate students and provides numerous worked examples and exercises to help build the important skills necessary for problem solving.


Fluctuations of Lévy Processes with Applications

Fluctuations of Lévy Processes with Applications

Author: Andreas E. Kyprianou

Publisher: Springer Science & Business Media

Published: 2014-01-09

Total Pages: 461

ISBN-13: 3642376320

DOWNLOAD EBOOK

Lévy processes are the natural continuous-time analogue of random walks and form a rich class of stochastic processes around which a robust mathematical theory exists. Their application appears in the theory of many areas of classical and modern stochastic processes including storage models, renewal processes, insurance risk models, optimal stopping problems, mathematical finance, continuous-state branching processes and positive self-similar Markov processes. This textbook is based on a series of graduate courses concerning the theory and application of Lévy processes from the perspective of their path fluctuations. Central to the presentation is the decomposition of paths in terms of excursions from the running maximum as well as an understanding of short- and long-term behaviour. The book aims to be mathematically rigorous while still providing an intuitive feel for underlying principles. The results and applications often focus on the case of Lévy processes with jumps in only one direction, for which recent theoretical advances have yielded a higher degree of mathematical tractability. The second edition additionally addresses recent developments in the potential analysis of subordinators, Wiener-Hopf theory, the theory of scale functions and their application to ruin theory, as well as including an extensive overview of the classical and modern theory of positive self-similar Markov processes. Each chapter has a comprehensive set of exercises.


Introduction to Stochastic Differential Equations with Applications to Modelling in Biology and Finance

Introduction to Stochastic Differential Equations with Applications to Modelling in Biology and Finance

Author: Carlos A. Braumann

Publisher: John Wiley & Sons

Published: 2019-03-08

Total Pages: 303

ISBN-13: 1119166071

DOWNLOAD EBOOK

A comprehensive introduction to the core issues of stochastic differential equations and their effective application Introduction to Stochastic Differential Equations with Applications to Modelling in Biology and Finance offers a comprehensive examination to the most important issues of stochastic differential equations and their applications. The author — a noted expert in the field — includes myriad illustrative examples in modelling dynamical phenomena subject to randomness, mainly in biology, bioeconomics and finance, that clearly demonstrate the usefulness of stochastic differential equations in these and many other areas of science and technology. The text also features real-life situations with experimental data, thus covering topics such as Monte Carlo simulation and statistical issues of estimation, model choice and prediction. The book includes the basic theory of option pricing and its effective application using real-life. The important issue of which stochastic calculus, Itô or Stratonovich, should be used in applications is dealt with and the associated controversy resolved. Written to be accessible for both mathematically advanced readers and those with a basic understanding, the text offers a wealth of exercises and examples of application. This important volume: Contains a complete introduction to the basic issues of stochastic differential equations and their effective application Includes many examples in modelling, mainly from the biology and finance fields Shows how to: Translate the physical dynamical phenomenon to mathematical models and back, apply with real data, use the models to study different scenarios and understand the effect of human interventions Conveys the intuition behind the theoretical concepts Presents exercises that are designed to enhance understanding Offers a supporting website that features solutions to exercises and R code for algorithm implementation Written for use by graduate students, from the areas of application or from mathematics and statistics, as well as academics and professionals wishing to study or to apply these models, Introduction to Stochastic Differential Equations with Applications to Modelling in Biology and Finance is the authoritative guide to understanding the issues of stochastic differential equations and their application.


How I Became a Quant

How I Became a Quant

Author: Richard R. Lindsey

Publisher: John Wiley & Sons

Published: 2011-01-11

Total Pages: 406

ISBN-13: 1118044754

DOWNLOAD EBOOK

Praise for How I Became a Quant "Led by two top-notch quants, Richard R. Lindsey and Barry Schachter, How I Became a Quant details the quirky world of quantitative analysis through stories told by some of today's most successful quants. For anyone who might have thought otherwise, there are engaging personalities behind all that number crunching!" --Ira Kawaller, Kawaller & Co. and the Kawaller Fund "A fun and fascinating read. This book tells the story of how academics, physicists, mathematicians, and other scientists became professional investors managing billions." --David A. Krell, President and CEO, International Securities Exchange "How I Became a Quant should be must reading for all students with a quantitative aptitude. It provides fascinating examples of the dynamic career opportunities potentially open to anyone with the skills and passion for quantitative analysis." --Roy D. Henriksson, Chief Investment Officer, Advanced Portfolio Management "Quants"--those who design and implement mathematical models for the pricing of derivatives, assessment of risk, or prediction of market movements--are the backbone of today's investment industry. As the greater volatility of current financial markets has driven investors to seek shelter from increasing uncertainty, the quant revolution has given people the opportunity to avoid unwanted financial risk by literally trading it away, or more specifically, paying someone else to take on the unwanted risk. How I Became a Quant reveals the faces behind the quant revolution, offering you?the?chance to learn firsthand what it's like to be a?quant today. In this fascinating collection of Wall Street war stories, more than two dozen quants detail their roots, roles, and contributions, explaining what they do and how they do it, as well as outlining the sometimes unexpected paths they have followed from the halls of academia to the front lines of an investment revolution.


Handbook of Monte Carlo Methods

Handbook of Monte Carlo Methods

Author: Dirk P. Kroese

Publisher: John Wiley & Sons

Published: 2013-06-06

Total Pages: 627

ISBN-13: 1118014952

DOWNLOAD EBOOK

A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.


Gerber–Shiu Risk Theory

Gerber–Shiu Risk Theory

Author: Andreas E. Kyprianou

Publisher: Springer Science & Business Media

Published: 2013-10-02

Total Pages: 95

ISBN-13: 3319023039

DOWNLOAD EBOOK

Motivated by the many and long-standing contributions of H. Gerber and E. Shiu, this book gives a modern perspective on the problem of ruin for the classical Cramér–Lundberg model and the surplus of an insurance company. The book studies martingales and path decompositions, which are the main tools used in analysing the distribution of the time of ruin, the wealth prior to ruin and the deficit at ruin. Recent developments in exotic ruin theory are also considered. In particular, by making dividend or tax payments out of the surplus process, the effect on ruin is explored. Gerber-Shiu Risk Theory can be used as lecture notes and is suitable for a graduate course. Each chapter corresponds to approximately two hours of lectures.


Mathematics for Neuroscientists

Mathematics for Neuroscientists

Author: Fabrizio Gabbiani

Publisher: Academic Press

Published: 2017-02-04

Total Pages: 630

ISBN-13: 0128019069

DOWNLOAD EBOOK

Mathematics for Neuroscientists, Second Edition, presents a comprehensive introduction to mathematical and computational methods used in neuroscience to describe and model neural components of the brain from ion channels to single neurons, neural networks and their relation to behavior. The book contains more than 200 figures generated using Matlab code available to the student and scholar. Mathematical concepts are introduced hand in hand with neuroscience, emphasizing the connection between experimental results and theory. - Fully revised material and corrected text - Additional chapters on extracellular potentials, motion detection and neurovascular coupling - Revised selection of exercises with solutions - More than 200 Matlab scripts reproducing the figures as well as a selection of equivalent Python scripts


Computational Optimal Transport

Computational Optimal Transport

Author: Gabriel Peyre

Publisher: Foundations and Trends(r) in M

Published: 2019-02-12

Total Pages: 272

ISBN-13: 9781680835502

DOWNLOAD EBOOK

The goal of Optimal Transport (OT) is to define geometric tools that are useful to compare probability distributions. Their use dates back to 1781. Recent years have witnessed a new revolution in the spread of OT, thanks to the emergence of approximate solvers that can scale to sizes and dimensions that are relevant to data sciences. Thanks to this newfound scalability, OT is being increasingly used to unlock various problems in imaging sciences (such as color or texture processing), computer vision and graphics (for shape manipulation) or machine learning (for regression, classification and density fitting). This monograph reviews OT with a bias toward numerical methods and their applications in data sciences, and sheds lights on the theoretical properties of OT that make it particularly useful for some of these applications. Computational Optimal Transport presents an overview of the main theoretical insights that support the practical effectiveness of OT before explaining how to turn these insights into fast computational schemes. Written for readers at all levels, the authors provide descriptions of foundational theory at two-levels. Generally accessible to all readers, more advanced readers can read the specially identified more general mathematical expositions of optimal transport tailored for discrete measures. Furthermore, several chapters deal with the interplay between continuous and discrete measures, and are thus targeting a more mathematically-inclined audience. This monograph will be a valuable reference for researchers and students wishing to get a thorough understanding of Computational Optimal Transport, a mathematical gem at the interface of probability, analysis and optimization.