Sampling, Wavelets, and Tomography

Sampling, Wavelets, and Tomography

Author: John J. Benedetto

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 358

ISBN-13: 0817682120

DOWNLOAD EBOOK

Sampling, wavelets, and tomography are three active areas of contemporary mathematics sharing common roots that lie at the heart of harmonic and Fourier analysis. The advent of new techniques in mathematical analysis has strengthened their interdependence and led to some new and interesting results in the field. This state-of-the-art book not only presents new results in these research areas, but it also demonstrates the role of sampling in both wavelet theory and tomography. Specific topics covered include: * Robustness of Regular Sampling in Sobolev Algebras * Irregular and Semi-Irregular Weyl-Heisenberg Frames * Adaptive Irregular Sampling in Meshfree Flow Simulation * Sampling Theorems for Non-Bandlimited Signals * Polynomial Matrix Factorization, Multidimensional Filter Banks, and Wavelets * Generalized Frame Multiresolution Analysis of Abstract Hilbert Spaces * Sampling Theory and Parallel-Beam Tomography * Thin-Plate Spline Interpolation in Medical Imaging * Filtered Back-Projection Algorithms for Spiral Cone Computed Tomography Aimed at mathematicians, scientists, and engineers working in signal and image processing and medical imaging, the work is designed to be accessible to an audience with diverse mathematical backgrounds. Although the volume reflects the contributions of renowned mathematicians and engineers, each chapter has an expository introduction written for the non-specialist. One of the key features of the book is an introductory chapter stressing the interdependence of the three main areas covered. A comprehensive index completes the work. Contributors: J.J. Benedetto, N.K. Bose, P.G. Casazza, Y.C. Eldar, H.G. Feichtinger, A. Faridani, A. Iske, S. Jaffard, A. Katsevich, S. Lertrattanapanich, G. Lauritsch, B. Mair, M. Papadakis, P.P. Vaidyanathan, T. Werther, D.C. Wilson, A.I. Zayed


An Introduction to Wavelet Analysis

An Introduction to Wavelet Analysis

Author: David F. Walnut

Publisher: Springer Science & Business Media

Published: 2013-12-11

Total Pages: 453

ISBN-13: 1461200016

DOWNLOAD EBOOK

This book provides a comprehensive presentation of the conceptual basis of wavelet analysis, including the construction and analysis of wavelet bases. It motivates the central ideas of wavelet theory by offering a detailed exposition of the Haar series, then shows how a more abstract approach allows readers to generalize and improve upon the Haar series. It then presents a number of variations and extensions of Haar construction.


Wavelets and Signal Processing

Wavelets and Signal Processing

Author: Lokenath Debnath

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 450

ISBN-13: 1461200253

DOWNLOAD EBOOK

Provides a digest of the current developments, open questions and unsolved problems likely to determine a new frontier for future advanced study and research in the rapidly growing areas of wavelets, wavelet transforms, signal analysis, and signal and image processing. Ideal reference work for advanced students and practitioners in wavelets, and wavelet transforms, signal processing and time-frequency signal analysis. Professionals working in electrical and computer engineering, applied mathematics, computer science, biomedical engineering, physics, optics, and fluid mechanics will also find the book a valuable resource.


Harmonic, Wavelet And P-adic Analysis

Harmonic, Wavelet And P-adic Analysis

Author: Yu V Egorov

Publisher: World Scientific

Published: 2007-05-14

Total Pages: 393

ISBN-13: 9814476005

DOWNLOAD EBOOK

The mutual influence between mathematics and science and technology is becoming more and more widespread with profound connections among them being discovered. In particular, important connections between harmonic analysis, wavelet analysis and p-adic analysis have been found recently.This volume reports these findings and guides the reader towards the latest areas for further research. It is divided into two parts: harmonic, wavelet and p-adic analysis and p-adic and stochastic analysis.


Wavelets in Neuroscience

Wavelets in Neuroscience

Author: Alexander E. Hramov

Publisher: Springer Nature

Published: 2021-06-16

Total Pages: 384

ISBN-13: 303075992X

DOWNLOAD EBOOK

This book illustrates how modern mathematical wavelet transform techniques offer fresh insights into the complex behavior of neural systems at different levels: from the microscopic dynamics of individual cells to the macroscopic behavior of large neural networks. It also demonstrates how and where wavelet-based mathematical tools can provide an advantage over classical approaches used in neuroscience. The authors well describe single neuron and populational neural recordings. This 2nd edition discusses novel areas and significant advances resulting from experimental techniques and computational approaches developed since 2015, and includes three new topics: • Detection of fEPSPs in multielectrode LFPs recordings. • Analysis of Visual Sensory Processing in the Brain and BCI for Human Attention Control; • Analysis and Real-time Classification of Motor-related EEG Patterns; The book is a valuable resource for neurophysiologists and physicists familiar with nonlinear dynamical systems and data processing, as well as for graduate students specializing in these and related areas.


Sampling Theory

Sampling Theory

Author: Yonina C. Eldar

Publisher: Cambridge University Press

Published: 2015-04-09

Total Pages: 837

ISBN-13: 1107003393

DOWNLOAD EBOOK

A comprehensive guide to sampling for engineers, covering the fundamental mathematical underpinnings together with practical engineering principles and applications.


Framelets and Wavelets

Framelets and Wavelets

Author: Bin Han

Publisher: Springer

Published: 2018-01-04

Total Pages: 750

ISBN-13: 3319685309

DOWNLOAD EBOOK

Marking a distinct departure from the perspectives of frame theory and discrete transforms, this book provides a comprehensive mathematical and algorithmic introduction to wavelet theory. As such, it can be used as either a textbook or reference guide. As a textbook for graduate mathematics students and beginning researchers, it offers detailed information on the basic theory of framelets and wavelets, complemented by self-contained elementary proofs, illustrative examples/figures, and supplementary exercises. Further, as an advanced reference guide for experienced researchers and practitioners in mathematics, physics, and engineering, the book addresses in detail a wide range of basic and advanced topics (such as multiwavelets/multiframelets in Sobolev spaces and directional framelets) in wavelet theory, together with systematic mathematical analysis, concrete algorithms, and recent developments in and applications of framelets and wavelets. Lastly, the book can also be used to teach on or study selected special topics in approximation theory, Fourier analysis, applied harmonic analysis, functional analysis, and wavelet-based signal/image processing.


Modern Sampling Theory

Modern Sampling Theory

Author: John J. Benedetto

Publisher: Springer Science & Business Media

Published: 2001-02-16

Total Pages: 448

ISBN-13: 9780817640231

DOWNLOAD EBOOK

Sampling is a fundamental topic in the engineering and physical sciences. This new edited book focuses on recent mathematical methods and theoretical developments, as well as some current central applications of the Classical Sampling Theorem. The Classical Sampling Theorem, which originated in the 19th century, is often associated with the names of Shannon, Kotelnikov, and Whittaker; and one of the features of this book is an English translation of the pioneering work in the 1930s by Kotelnikov, a Russian engineer. Following a technical overview and Kotelnikov's article, the book includes a wide and coherent range of mathematical ideas essential for modern sampling techniques. These ideas involve wavelets and frames, complex and abstract harmonic analysis, the Fast Fourier Transform (FFT), and special functions and eigenfunction expansions. Some of the applications addressed are tomography and medical imaging. Topics and features: • Relations between wavelet theory, the uncertainty principle, and sampling • Multidimensional non-uniform sampling theory and algorithms • The analysis of oscillatory behavior through sampling • Sampling techniques in deconvolution • The FFT for non-uniformly distributed data • Filter design and sampling • Sampling of noisy data for signal reconstruction • Finite dimensional models for oversampled filter banks • Sampling problems in MRI. Engineers and mathematicians working in wavelets, signal processing, and harmonic analysis, as well as scientists and engineers working on applications as varied as medical imaging and synthetic aperture radar, will find the book to be a modern and authoritative guide to sampling theory.


Wavelet Structure and Design

Wavelet Structure and Design

Author: Daniel J. Greenhoe

Publisher: Abstract Space Publishing

Published: 2013-08-21

Total Pages: 451

ISBN-13: 0983801134

DOWNLOAD EBOOK

This book presents the structure of wavelets, principles of wavelet design, and mathematical structure that supports wavelet theory.


Wavelets, Multiscale Systems and Hypercomplex Analysis

Wavelets, Multiscale Systems and Hypercomplex Analysis

Author: Daniel Alpay

Publisher: Springer Science & Business Media

Published: 2006-08-06

Total Pages: 197

ISBN-13: 3764375884

DOWNLOAD EBOOK

This volume contains a selection of papers on the topics of Clifford analysis and wavelets and multiscale analysis, the latter being understood in a very wide sense. The theory of wavelets is mathematically rich and has many practical applications. Most of the articles have been written on invitation and they provide a unique collection of material, particularly relating to Clifford analysis and the theory of wavelets.