The thesis analyzes the effect that the sample size, the asymmetry in the distribution of returns and the leverage in their volatility have on the estimation and forecasting of market risk in financial assets. The goal is to compare the performance of a variety of models for the estimation and forecasting of Value at Risk (VaR) and Expected Shortfall (ES) for a set of assets of different nature: market indexes, individual stocks, bonds, exchange rates, and commodities. The three chapters of the thesis address issues of greatest interest for the measurement of risk in financial institutions and, therefore, for the supervision of risks in the financial system. They deal with technical issues related to the implementation of the Basel Committee's guidelines on some aspects of which very little is known in the academic world and in the specialized financial sector. In the first chapter, a numerical correction is proposed on the values usually estimatedwhen there is little statistical information, either because it is a financial asset (bond, investment fund...) recently created or issued, or because the nature or the structure of the asset or portfolio have recently changed. The second chapter analyzes the relevance of different aspects of risk modeling. The third and last chapter provides a characterization of the preferable methodology to comply with Basel requirements related to the backtesting of the Expected Shortfall.
The estimation of risk measures is an area of highest importance in the financial industry. Risk measures play a major role in the risk-management and in the computation of regulatory capital. The Basel III document [13] has suggested to shift from Value-at-Risk (VaR) into Expected Shortfall (ES) as a risk measure and to consider stressed scenarios at a new con dence level of 97:5%. This change is motivated by the appealing theoretical properties of ES as a measure of risk and the poor properties of VaR. In particular, VaR fails to control for tail risk". In this transition, the major challenge faced by nancial institutions is the unavailability of simple tools for evaluation of ES forecasts (i.e. backtesting ES) The objective of this thesis is to compare the performance of a variety of models for VaR and ES estimation for a collection of assets of di erent nature: stock indexes, individual stocks, bonds, exchange rates, and commodities. Throughout the thesis, by a VaR or an ES model" is meant a given speci cation for conditional volatility, combined with an assumption on the probability distribution of return innovations...
This book adds to the resolution of two problems in finance and economics: i) what is macro-financial uncertainty? : How to measure it? How is it different from risk? How important is it for the financial markets? And ii) what sort of asymmetries underlie financial risk and uncertainty propagation across the global financial markets? That is, how risk and uncertainty change according to factors such as market states or market participants. In Chapter 2, which is entitled “Momentum Uncertainties”, the relationship between macroeconomic uncertainty and the abnormal returns of a momentum trading strategy in the stock market is studies. We show that high levels of uncertainty in the economy impact negatively and significantly the returns of a portfolio of stocks that consist of buying past winners and selling past losers. High uncertainty reduces below zero the abnormal returns of momentum, extinguishes the Sharpe ratio of the momentum strategy, while increases the probability of momentum crashes both by increasing the skewness and the kurtosis of the momentum return distribution. Uncertainty acts as an economic regime that underlies abrupt changes over time of the returns generated by momentum strategies. In Chapter 3, “Measuring Uncertainty in the Stock Market”, a new index for measuring stock market uncertainty on a daily basis is proposed. The index considers the inherent differentiation between uncertainty and the common variations between the series. The second contribution of chapter 3 is to show how this financial uncertainty index can also serve as an indicator of macroeconomic uncertainty. Finally, the dynamic relationship between uncertainty and the series of consumption, interest rates, production and stock market prices, among others, is analized. In chapter 4: “Uncertainty, Systemic Shocks and the Global Banking Sector: Has the Crisis Modified their Relationship?” we explore the stability of systemic risk and uncertainty propagation among financial institutions in the global economy, and show that it has remained stable over the last decade. Additionally, a new simple tool for measuring the resilience of financial institutions to these systemic shocks is provided. We examine the characteristics and stability of systemic risk and uncertainty, in relation to the dynamics of the banking sector stock returns. This sort of evidence is supportive of past claims, made in the field of macroeconomics, which hold that during the global financial crisis the financial system may have faced stronger versions of traditional shocks rather than a new type of shock. In chapter 5, “Currency downside risk, liquidity, and financial stability”, downside risk propagation across global currency markets and the ways in which it is related to liquidity is analyzed. Two primary contributions to the literature follow. First, tail-spillovers between currencies in the global FX market are estimated. This index is easy to build and does not require intraday data, which constitutes an important advantage. Second, we show that turnover is related to risk spillovers in global currency markets. Chapter 6 is entitled “Spillovers from the United States to Latin American and G7 Stock Markets: A VAR-Quantile Analysis”. This chapter contributes to the studies of contagion, market integration and cross-border spillovers during both regular and crisis episodes by carrying out a multivariate quantile analysis. It focuses on Latin American stock markets, which have been characterized by a highly positive dynamic in recent decades, in terms of market capitalization and liquidity ratios, after a far-reaching process of market liberalization and reforms to pension funds across the continent during the 80s and 90s. We document smaller dependences between the LA markets and the US market than those between the US and the developed economies, especially in the highest and lowest quantiles.
Financial Risk Forecasting is a complete introduction to practical quantitative risk management, with a focus on market risk. Derived from the authors teaching notes and years spent training practitioners in risk management techniques, it brings together the three key disciplines of finance, statistics and modeling (programming), to provide a thorough grounding in risk management techniques. Written by renowned risk expert Jon Danielsson, the book begins with an introduction to financial markets and market prices, volatility clusters, fat tails and nonlinear dependence. It then goes on to present volatility forecasting with both univatiate and multivatiate methods, discussing the various methods used by industry, with a special focus on the GARCH family of models. The evaluation of the quality of forecasts is discussed in detail. Next, the main concepts in risk and models to forecast risk are discussed, especially volatility, value-at-risk and expected shortfall. The focus is both on risk in basic assets such as stocks and foreign exchange, but also calculations of risk in bonds and options, with analytical methods such as delta-normal VaR and duration-normal VaR and Monte Carlo simulation. The book then moves on to the evaluation of risk models with methods like backtesting, followed by a discussion on stress testing. The book concludes by focussing on the forecasting of risk in very large and uncommon events with extreme value theory and considering the underlying assumptions behind almost every risk model in practical use – that risk is exogenous – and what happens when those assumptions are violated. Every method presented brings together theoretical discussion and derivation of key equations and a discussion of issues in practical implementation. Each method is implemented in both MATLAB and R, two of the most commonly used mathematical programming languages for risk forecasting with which the reader can implement the models illustrated in the book. The book includes four appendices. The first introduces basic concepts in statistics and financial time series referred to throughout the book. The second and third introduce R and MATLAB, providing a discussion of the basic implementation of the software packages. And the final looks at the concept of maximum likelihood, especially issues in implementation and testing. The book is accompanied by a website - www.financialriskforecasting.com – which features downloadable code as used in the book.
The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.
The recent global financial crisis has forced a re-examination of risk transmission in the financial sector and how it affects financial stability. Current macroprudential policy and surveillance (MPS) efforts are aimed establishing a regulatory framework that helps mitigate the risk from systemic linkages with a view towards enhancing the resilience of the financial sector. This paper presents a forward-looking framework ("Systemic CCA") to measure systemic solvency risk based on market-implied expected losses of financial institutions with practical applications for the financial sector risk management and the system-wide capital assessment in top-down stress testing. The suggested approach uses advanced contingent claims analysis (CCA) to generate aggregate estimates of the joint default risk of multiple institutions as a conditional tail expectation using multivariate extreme value theory (EVT). In addition, the framework also helps quantify the individual contributions to systemic risk and contingent liabilities of the financial sector during times of stress.
This book presents in detail methodologies for the Bayesian estimation of sing- regime and regime-switching GARCH models. These models are widespread and essential tools in n ancial econometrics and have, until recently, mainly been estimated using the classical Maximum Likelihood technique. As this study aims to demonstrate, the Bayesian approach o ers an attractive alternative which enables small sample results, robust estimation, model discrimination and probabilistic statements on nonlinear functions of the model parameters. The author is indebted to numerous individuals for help in the preparation of this study. Primarily, I owe a great debt to Prof. Dr. Philippe J. Deschamps who inspired me to study Bayesian econometrics, suggested the subject, guided me under his supervision and encouraged my research. I would also like to thank Prof. Dr. Martin Wallmeier and my colleagues of the Department of Quantitative Economics, in particular Michael Beer, Roberto Cerratti and Gilles Kaltenrieder, for their useful comments and discussions. I am very indebted to my friends Carlos Ord as Criado, Julien A. Straubhaar, J er ^ ome Ph. A. Taillard and Mathieu Vuilleumier, for their support in the elds of economics, mathematics and statistics. Thanks also to my friend Kevin Barnes who helped with my English in this work. Finally, I am greatly indebted to my parents and grandparents for their support and encouragement while I was struggling with the writing of this thesis.
Stochastic volatility is the main concept used in the fields of financial economics and mathematical finance to deal with time-varying volatility in financial markets. This work brings together some of the main papers that have influenced this field, andshows that the development of this subject has been highly multidisciplinary.
In Volatility and Correlation 2nd edition: The Perfect Hedger and the Fox, Rebonato looks at derivatives pricing from the angle of volatility and correlation. With both practical and theoretical applications, this is a thorough update of the highly successful Volatility & Correlation – with over 80% new or fully reworked material and is a must have both for practitioners and for students. The new and updated material includes a critical examination of the ‘perfect-replication’ approach to derivatives pricing, with special attention given to exotic options; a thorough analysis of the role of quadratic variation in derivatives pricing and hedging; a discussion of the informational efficiency of markets in commonly-used calibration and hedging practices. Treatment of new models including Variance Gamma, displaced diffusion, stochastic volatility for interest-rate smiles and equity/FX options. The book is split into four parts. Part I deals with a Black world without smiles, sets out the author’s ‘philosophical’ approach and covers deterministic volatility. Part II looks at smiles in equity and FX worlds. It begins with a review of relevant empirical information about smiles, and provides coverage of local-stochastic-volatility, general-stochastic-volatility, jump-diffusion and Variance-Gamma processes. Part II concludes with an important chapter that discusses if and to what extent one can dispense with an explicit specification of a model, and can directly prescribe the dynamics of the smile surface. Part III focusses on interest rates when the volatility is deterministic. Part IV extends this setting in order to account for smiles in a financially motivated and computationally tractable manner. In this final part the author deals with CEV processes, with diffusive stochastic volatility and with Markov-chain processes. Praise for the First Edition: “In this book, Dr Rebonato brings his penetrating eye to bear on option pricing and hedging.... The book is a must-read for those who already know the basics of options and are looking for an edge in applying the more sophisticated approaches that have recently been developed.” —Professor Ian Cooper, London Business School “Volatility and correlation are at the very core of all option pricing and hedging. In this book, Riccardo Rebonato presents the subject in his characteristically elegant and simple fashion...A rare combination of intellectual insight and practical common sense.” —Anthony Neuberger, London Business School
In many areas of finance and stochastics, significant advances have been made since this field of research was opened by Black, Scholes and Merton in 1973. This volume contains a collection of original articles by a number of highly distinguished authors, on research topics that are currently in the focus of interest of both academics and practitioners.