Sample Preparation Handbook for Transmission Electron Microscopy

Sample Preparation Handbook for Transmission Electron Microscopy

Author: Jeanne Ayache

Publisher: Springer

Published: 2010-07-09

Total Pages: 0

ISBN-13: 9781441960870

DOWNLOAD EBOOK

This two-volume Handbook is a comprehensive guide to sample preparation for the transmission electron microscope. The first volume covers general theoretical and practical aspects of the methodologies used for TEM analysis and observation of any sample. The information will help you to choose the best preparative technique for your application taking into account material types, structures, and their properties. Physical properties, material classification, and microstructures are considered together with a thorough description of the physics and chemistry of sample preparation and the main artifacts brought about by mechanical, physical and chemical methods, principles which are also applicable to sample preparation for the SEM, AFM etc.. Also included is a discussion of how to combine techniques for complex sample analysis and to obtain a TEM thin slice. Sample Preparation Handbook for Transmission Electron Microscopy: Methodology will guide you through the most current techniques for successful sample preparation in all fields from materials science to biology. The second volume, Sample Preparation Handbook for Transmission Electron Microscopy: Techniques, describes 14 different preparation techniques, including 22 detailed protocols for preparing thin slices for TEM analysis. Compatibility and pre-treatments are also discussed. Experimental conditions and guidelines, options and variations, advantages and constraints, technical hints from the authors’ years of experience, common artifacts, and theoretical issues are all considered. Particular attention is given to the type of material, conditioning, compatible analysis of a given preparation, and risks. This practical and authoritative reference companion deserves a place on the bench in every TEM lab. Key Features of the Handbook: Combines all of the latest techniques for the preparation of mineral to biological samples Compares techniques in terms of their application areas, limitations, artifacts, and types of analysis (macroscopic, atomic, or molecular level) Describes physical characteristics, chemistry, structure/texture, and orientation properties of materials in relation to the most appropriate type of TEM analysis Links to a complementary interactive database website which is available to scientists worldwide* Written by authors with 100 years of combined experience in electron microscopy *http://temsamprep.in2p3.fr/


Sample Preparation Handbook for Transmission Electron Microscopy

Sample Preparation Handbook for Transmission Electron Microscopy

Author: Jeanne Ayache

Publisher: Springer Science & Business Media

Published: 2010-06-08

Total Pages: 338

ISBN-13: 9781441959744

DOWNLOAD EBOOK

Successful transmission electron microscopy in all of its manifestations depends on the quality of the specimens examined. Biological specimen preparation protocols have usually been more rigorous and time consuming than those in the physical sciences. For this reason, there has been a wealth of scienti c literature detailing speci c preparation steps and numerous excellent books on the preparation of b- logical thin specimens. This does not mean to imply that physical science specimen preparation is trivial. For the most part, most physical science thin specimen pre- ration protocols can be executed in a matter of a few hours using straightforward steps. Over the years, there has been a steady stream of papers written on various aspects of preparing thin specimens from bulk materials. However, aside from s- eral seminal textbooks and a series of book compilations produced by the Material Research Society in the 1990s, no recent comprehensive books on thin specimen preparation have appeared until this present work, rst in French and now in English. Everyone knows that the data needed to solve a problem quickly are more imp- tant than ever. A modern TEM laboratory with supporting SEMs, light microscopes, analytical spectrometers, computers, and specimen preparation equipment is an investment of several million US dollars. Fifty years ago, electropolishing, chemical polishing, and replication methods were the principal specimen preparation me- ods.


Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis

Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis

Author: Patrick Echlin

Publisher: Springer Science & Business Media

Published: 2011-04-14

Total Pages: 329

ISBN-13: 0387857311

DOWNLOAD EBOOK

Scanning electr on microscopy (SEM) and x-ray microanalysis can produce magnified images and in situ chemical information from virtually any type of specimen. The two instruments generally operate in a high vacuum and a very dry environment in order to produce the high energy beam of electrons needed for imaging and analysis. With a few notable exceptions, most specimens destined for study in the SEM are poor conductors and composed of beam sensitive light elements containing variable amounts of water. In the SEM, the imaging system depends on the specimen being sufficiently electrically conductive to ensure that the bulk of the incoming electrons go to ground. The formation of the image depends on collecting the different signals that are scattered as a consequence of the high energy beam interacting with the sample. Backscattered electrons and secondary electrons are generated within the primary beam-sample interactive volume and are the two principal signals used to form images. The backscattered electron coefficient ( ? ) increases with increasing atomic number of the specimen, whereas the secondary electron coefficient ( ? ) is relatively insensitive to atomic number. This fundamental diff- ence in the two signals can have an important effect on the way samples may need to be prepared. The analytical system depends on collecting the x-ray photons that are generated within the sample as a consequence of interaction with the same high energy beam of primary electrons used to produce images.


na

na

Author:

Publisher:

Published:

Total Pages:

ISBN-13: 9780387981833

DOWNLOAD EBOOK


Biological Specimen Preparation for Transmission Electron Microscopy

Biological Specimen Preparation for Transmission Electron Microscopy

Author: Audrey M. Glauert

Publisher: Princeton University Press

Published: 2014-07-14

Total Pages: 349

ISBN-13: 1400865026

DOWNLOAD EBOOK

This book contains all the necessary information and advice for anyone wishing to obtain electron micrographs showing the most accurate ultrastructural detail in thin sections of any type of biological specimen. The guidelines for the choice of preparative methods are based on an extensive survey of current laboratory practice. For the first time, in a textbook of this kind, the molecular events occurring during fixation and embedding are analysed in detail. The reasons for choosing particular specimen preparation methods are explained and guidance is given on how to modify established techniques to suit individual requirements. All the practical methods advocated are clearly described, with accompanying tables and the results obtainable are illustrated with many electron micrographs. Portland Press Series: Practical Methods in Electron Microscopy, Volume 17, Audrey M. Glauert, Editor Originally published in 1999. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.


A Beginners' Guide to Scanning Electron Microscopy

A Beginners' Guide to Scanning Electron Microscopy

Author: Anwar Ul-Hamid

Publisher: Springer

Published: 2018-10-26

Total Pages: 422

ISBN-13: 3319984829

DOWNLOAD EBOOK

This book was developed with the goal of providing an easily understood text for those users of the scanning electron microscope (SEM) who have little or no background in the area. The SEM is routinely used to study the surface structure and chemistry of a wide range of biological and synthetic materials at the micrometer to nanometer scale. Ease-of-use, typically facile sample preparation, and straightforward image interpretation, combined with high resolution, high depth of field, and the ability to undertake microchemical and crystallographic analysis, has made scanning electron microscopy one of the most powerful and versatile techniques for characterization today. Indeed, the SEM is a vital tool for the characterization of nanostructured materials and the development of nanotechnology. However, its wide use by professionals with diverse technical backgrounds—including life science, materials science, engineering, forensics, mineralogy, etc., and in various sectors of government, industry, and academia—emphasizes the need for an introductory text providing the basics of effective SEM imaging.A Beginners’ Guide to Scanning Electron Microscopy explains instrumentation, operation, image interpretation and sample preparation in a wide ranging yet succinct and practical text, treating the essential theory of specimen-beam interaction and image formation in a manner that can be effortlessly comprehended by the novice SEM user. This book provides a concise and accessible introduction to the essentials of SEM includes a large number of illustrations specifically chosen to aid readers' understanding of key concepts highlights recent advances in instrumentation, imaging and sample preparation techniques offers examples drawn from a variety of applications that appeal to professionals from diverse backgrounds.


Transmission Electron Microscopy

Transmission Electron Microscopy

Author: David B. Williams

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 708

ISBN-13: 1475725191

DOWNLOAD EBOOK

Electron microscopy has revolutionized our understanding the extraordinary intellectual demands required of the mi of materials by completing the processing-structure-prop croscopist in order to do the job properly: crystallography, erties links down to atomistic levels. It now is even possible diffraction, image contrast, inelastic scattering events, and to tailor the microstructure (and meso structure ) of materials spectroscopy. Remember, these used to be fields in them to achieve specific sets of properties; the extraordinary abili selves. Today, one has to understand the fundamentals ties of modem transmission electron microscopy-TEM of all of these areas before one can hope to tackle signifi instruments to provide almost all of the structural, phase, cant problems in materials science. TEM is a technique of and crystallographic data allow us to accomplish this feat. characterizing materials down to the atomic limits. It must Therefore, it is obvious that any curriculum in modem mate be used with care and attention, in many cases involving rials education must include suitable courses in electron mi teams of experts from different venues. The fundamentals croscopy. It is also essential that suitable texts be available are, of course, based in physics, so aspiring materials sci for the preparation of the students and researchers who must entists would be well advised to have prior exposure to, for carry out electron microscopy properly and quantitatively.


Transmission Electron Microscopy

Transmission Electron Microscopy

Author: C. Barry Carter

Publisher: Springer

Published: 2016-08-24

Total Pages: 543

ISBN-13: 3319266519

DOWNLOAD EBOOK

This text is a companion volume to Transmission Electron Microscopy: A Textbook for Materials Science by Williams and Carter. The aim is to extend the discussion of certain topics that are either rapidly changing at this time or that would benefit from more detailed discussion than space allowed in the primary text. World-renowned researchers have contributed chapters in their area of expertise, and the editors have carefully prepared these chapters to provide a uniform tone and treatment for this exciting material. The book features an unparalleled collection of color figures showcasing the quality and variety of chemical data that can be obtained from today’s instruments, as well as key pitfalls to avoid. As with the previous TEM text, each chapter contains two sets of questions, one for self assessment and a second more suitable for homework assignments. Throughout the book, the style follows that of Williams & Carter even when the subject matter becomes challenging—the aim is always to make the topic understandable by first-year graduate students and others who are working in the field of Materials Science Topics covered include sources, in-situ experiments, electron diffraction, Digital Micrograph, waves and holography, focal-series reconstruction and direct methods, STEM and tomography, energy-filtered TEM (EFTEM) imaging, and spectrum imaging. The range and depth of material makes this companion volume essential reading for the budding microscopist and a key reference for practicing researchers using these and related techniques.


Handbook of Biological Confocal Microscopy

Handbook of Biological Confocal Microscopy

Author: James Pawley

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 639

ISBN-13: 1475753489

DOWNLOAD EBOOK

This third edition of a classic text in biological microscopy includes detailed descriptions and in-depth comparisons of parts of the microscope itself, digital aspects of data acquisition and properties of fluorescent dyes, the techniques of 3D specimen preparation and the fundamental limitations, and practical complexities of quantitative confocal fluorescence imaging. Coverage includes practical multiphoton, photodamage and phototoxicity, 3D FRET, 3D microscopy correlated with micro-MNR, CARS, second and third harmonic signals, ion imaging in 3D, scanning RAMAN, plant specimens, practical 3D microscopy and correlated optical tomography.


Handbook of Nanoscopy

Handbook of Nanoscopy

Author: Gustaaf van Tendeloo

Publisher: John Wiley & Sons

Published: 2012-12-21

Total Pages: 1484

ISBN-13: 3527641874

DOWNLOAD EBOOK

This completely revised successor to the Handbook of Microscopy supplies in-depth coverage of all imaging technologies from the optical to the electron and scanning techniques. Adopting a twofold approach, the book firstly presents the various technologies as such, before going on to cover the materials class by class, analyzing how the different imaging methods can be successfully applied. It covers the latest developments in techniques, such as in-situ TEM, 3D imaging in TEM and SEM, as well as a broad range of material types, including metals, alloys, ceramics, polymers, semiconductors, minerals, quasicrystals, amorphous solids, among others. The volumes are divided between methods and applications, making this both a reliable reference and handbook for chemists, physicists, biologists, materials scientists and engineers, as well as graduate students and their lecturers.