Despite a dearth of both water and love, the family discovers, through sorrow and fear, the green kiss of the Kappa Child, a mythical creature who blesses those who can imagine its magic -- back cover.
This book comprises select proceedings of the International Conference on Smart Technologies for Energy, Environment, and Sustainable Development (ICSTEESD 2018). The chapters are broadly divided into three focus areas, viz. energy, environment, and sustainable development, and discusses the relevance and applications of smart technologies in these fields. A wide variety of topics such as renewable energy, energy conservation and management, energy policy and planning, environmental management, marine environment, green building, smart cities, smart transportation are covered in this book. Researchers and professionals from varied engineering backgrounds contribute chapters with an aim to provide economically viable solutions to sustainable development challenges. The book will prove useful for academics, professionals, and policy makers interested in sustainable development.
This open access book is an outcome of the collaboration between the Soil and Water Management & Crop Nutrition Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria, and Dr. Shabbir A Shahid, Senior Salinity Management Expert, Freelancer based in United Arab Emirates.The objective of this book is to develop protocols for salinity and sodicity assessment and develop mitigation and adaptation measures to use saline and sodic soils sustainably. The focus is on important issues related to salinity and sodicity and to describe these in an easy and user friendly way. The information has been compiled from the latest published literature and from the authors’ publications specific to the subject matter. The book consists of six chapters. Chapter 1 introduces the terms salinity and sodicity and describes various salinity classification systems commonly used around the world. Chapter 2 reviews global distribution of salinization and socioeconomic aspects related to salinity and crop production. Chapters 3 covers comprehensively salinity and sodicity adaptation and mitigation options including physical, chemical, hydrological and biological methods. Chapter 4 discusses the efforts that have been made to demonstrate the development of soil salinity zones under different irrigation systems. Chapter 5 discusses the quality of irrigation water, boron toxicity and relative tolerance to boron, the effects of chlorides on crops. Chapter 6 introduces the role of nuclear techniques in saline agriculture.
The socio-economic activities due to world development are promoting increasing pressures on land, creating competition and conflicts, resulting in suboptimal use of resources. Integrated planning and management of land resources is a top subject of Agenda 21 (managed by FAO), which deals with the cross-sectoral aspects of decision-making for the sustainable use and development of natural resources. This is essential for life-support systems and its productive capacity. In this context, there is a need to find new strategies for sustainable development that links social and economic progress with environmental protection and enhancement. Electrokinetic transport processes (EK) uses a low-level direct current as the “cleaning agent”. EK has been applied to the remediation of polluted soils and other contaminated matrices. It also shows a great potential to be used in different fields, as in saline soil restoration, nutrients recovery from wastes or repair and maintenance of building structures. EK may be an integrated approach for new strategies aiming at sustainable development and to support waste strategies, with worldwide interest. EK can also be coupled with phytoremediation and integrated with nanotechnology, enlarging the scope of its application. The conciliation of the EK in the recovery of secondary resources, remediation and conservation is a multidisciplinary novel approach that opens new technical possibilities for waste minimization, through upgrading of particulate waste products and the recovery of secondary resources for industrial, agricultural or social use.
This book presents selected peer-reviewed papers from the International Conference on Recent Advancements in Air Conditioning and Refrigeration (RAAR) 2019. The focus is on current research in a very topical area of HVAC technology, which has wide-ranging applications. The topics covered include modern air conditioning and refrigeration practices, environment-friendly refrigerants, high-performance components, computer-assisted design, manufacture, operations and data management, energy-efficient buildings, and application of solar energy to heating and air conditioning. This book is useful for researchers and industry professionals working in the field of heating, air conditioning and refrigeration.
There are many ways to harness the renewable and emissions-free energy available from the Earth's oceans. The technologies include wave energy, tidal and current energy, and energy from thermal and salinity gradients. In addition, offshore wind energy and marine (floating) solar arrays offer a possibility to exploit vast resources that are far larger than those available onshore. The potential capacities range from many hundreds of gigawatts to terawatts of generation. These technologies could contribute a significant part of the global electricity demand; they are particularly suitable for providing sustainable power to marine regions and island communities and nations.
Management of Concentrate from Desalination Plants provides an overview of the alternatives for managing concentrate generated by brackish water and seawater desalination plants, as well as site-specific factors involved in the selection of the most viable alternative for a given project, and the environmental permitting requirements and studies associated with their implementation. The book focuses on widely used alternatives for disposal of concentrate, including discharge to surface water bodies; disposal to the wastewater collection system; deep well injection; land application; evaporation; and zero liquid discharge. Direct discharge through new outfall; discharge through existing wastewater treatment plant outfall; and co-disposal with the cooling water of existing coastal power plant are thoroughly described, and design guidance for the use of these concentrate disposal alternatives is presented with engineers and practitioners in the field of desalination in mind. Key advantages, disadvantages, environmental impact issues, and possible solutions are presented for each discharge alternative. Easy-to-use graphs depicting construction costs as a function of concentrate flow rate are provided for all key concentrate management alternatives. - Gives a critical overview of the latest practices and technological advancements in managing concentrate - Discusses the relationship between concentrate quality and quantity and other desalination processes - Provides design and cost guidance information to assist practitioners with the selection and sizing of the most commonly practiced concentrate disposal alternatives
Solar energy is available all over the world in different intensities. Theoretically, the solar energy available on the surface of the earth is enough to support the energy requirements of the entire planet. However, in reality, progress and development of solar science and technology depends to a large extent on human desires and needs. This is due to the various barriers to overcome and to deal with the economics of practical utilization of solar energy. This book introduces the rapid development and progress in the field of solar energy applications for science and technology: the advancement in the field of biological processes & chemical processes; electricity production; and mechanical operations & building operations enhanced by solar energy. The volume covers bio-hydrogen production and other biological processes related to solar energy; chemical processes for the production of hydrogen from water and other endothermic processes using solar energy; the development of thermo-electric production through solar energy; the development of solar ponds for electric energy production; and the mechanical operation with solar energy; the building operation with solar energy optimization and urban planning. This book is an invaluable resource for scientists who need the scientific and technological knowledge of the wide coverage of solar energy sciences and engineering applications. This will further encourage researchers, scientists, engineers and students to stimulate the use of solar energy as an alternative energy source.
Proceedings of the International TNO-Symposium held in Amsterdam, The Netherlands, 5-6 November 1980 by the Netherlands Organization for Applied Scientific Research