Chemical and biochemical Laboratories are full of potentially dangerous chemicals and equipment. 'Safety in the Chemistry and Biochemistry Laboratory' provides the necessary information needed for working with these chemicals and apparatus to avoid: fires, explosions, toxic fumes, skin burns, poisoning and other hazards. Both authors, André Picot and Philippe Grenouillet, are recognized authorities in the field of lab safety, and their book arrange the information not available in similar publications. It is addressed to members of Chemical Health& Safety as well as working chemists in labs everywhere. Also Lab managers will find the book a useful addition to their bookshelf.
Prudent Practices in the Laboratory-the book that has served for decades as the standard for chemical laboratory safety practice-now features updates and new topics. This revised edition has an expanded chapter on chemical management and delves into new areas, such as nanotechnology, laboratory security, and emergency planning. Developed by experts from academia and industry, with specialties in such areas as chemical sciences, pollution prevention, and laboratory safety, Prudent Practices in the Laboratory provides guidance on planning procedures for the handling, storage, and disposal of chemicals. The book offers prudent practices designed to promote safety and includes practical information on assessing hazards, managing chemicals, disposing of wastes, and more. Prudent Practices in the Laboratory will continue to serve as the leading source of chemical safety guidelines for people working with laboratory chemicals: research chemists, technicians, safety officers, educators, and students.
"...this substantial and engaging text offers a wealth of practical (in every sense of the word) advice...Every undergraduate laboratory, and, ideally, every undergraduate chemist, should have a copy of what is by some distance the best book I have seen on safety in the undergraduate laboratory." Chemistry World, March 2011 Laboratory Safety for Chemistry Students is uniquely designed to accompany students throughout their four-year undergraduate education and beyond, progressively teaching them the skills and knowledge they need to learn their science and stay safe while working in any lab. This new principles-based approach treats lab safety as a distinct, essential discipline of chemistry, enabling you to instill and sustain a culture of safety among students. As students progress through the text, they’ll learn about laboratory and chemical hazards, about routes of exposure, about ways to manage these hazards, and about handling common laboratory emergencies. Most importantly, they’ll learn that it is very possible to safely use hazardous chemicals in the laboratory by applying safety principles that prevent and minimize exposures. Continuously Reinforces and Builds Safety Knowledge and Safety Culture Each of the book’s eight chapters is organized into three tiers of sections, with a variety of topics suited to beginning, intermediate, and advanced course levels. This enables your students to gather relevant safety information as they advance in their lab work. In some cases, individual topics are presented more than once, progressively building knowledge with new information that’s appropriate at different levels. A Better, Easier Way to Teach and Learn Lab Safety We all know that safety is of the utmost importance; however, instructors continue to struggle with finding ways to incorporate safety into their curricula. Laboratory Safety for Chemistry Students is the ideal solution: Each section can be treated as a pre-lab assignment, enabling you to easily incorporate lab safety into all your lab courses without building in additional teaching time. Sections begin with a preview, a quote, and a brief description of a laboratory incident that illustrates the importance of the topic. References at the end of each section guide your students to the latest print and web resources. Students will also find “Chemical Connections” that illustrate how chemical principles apply to laboratory safety and “Special Topics” that amplify certain sections by exploring additional, relevant safety issues. Visit the companion site at http://userpages.wittenberg.edu/dfinster/LSCS/.
The U.S. Department of State charged the Academies with the task of producing a protocol for development of standard operating procedures (SOPs) that would serve as a complement to the Chemical Laboratory Safety and Security: A Guide to Prudent Chemical Management and be included with the other materials in the 2010 toolkit. To accomplish this task, a committee with experience and knowledge in good chemical safety and security practices in academic and industrial laboratories with awareness of international standards and regulations was formed. The hope is that this toolkit expansion product will enhance the use of the previous reference book and the accompanying toolkit, especially in developing countries where safety resources are scarce and experience of operators and end-users may be limited.
Recent serious and sometimes fatal accidents in chemical research laboratories at United States universities have driven government agencies, professional societies, industries, and universities themselves to examine the culture of safety in research laboratories. These incidents have triggered a broader discussion of how serious incidents can be prevented in the future and how best to train researchers and emergency personnel to respond appropriately when incidents do occur. As the priority placed on safety increases, many institutions have expressed a desire to go beyond simple compliance with regulations to work toward fostering a strong, positive safety culture: affirming a constant commitment to safety throughout their institutions, while integrating safety as an essential element in the daily work of laboratory researchers. Safe Science takes on this challenge. This report examines the culture of safety in research institutions and makes recommendations for university leadership, laboratory researchers, and environmental health and safety professionals to support safety as a core value of their institutions. The report discusses ways to fulfill that commitment through prioritizing funding for safety equipment and training, as well as making safety an ongoing operational priority. A strong, positive safety culture arises not because of a set of rules but because of a constant commitment to safety throughout an organization. Such a culture supports the free exchange of safety information, emphasizes learning and improvement, and assigns greater importance to solving problems than to placing blame. High importance is assigned to safety at all times, not just when it is convenient or does not threaten personal or institutional productivity goals. Safe Science will be a guide to make the changes needed at all levels to protect students, researchers, and staff.
Now in its fifth edition, the book has been updated to include more detailed descriptions of new or more commonly used techniques since the last edition as well as remove those that are no longer used, procedures which have been developed recently, ionization constants (pKa values) and also more detail about the trivial names of compounds.In addition to having two general chapters on purification procedures, this book provides details of the physical properties and purification procedures, taken from literature, of a very extensive number of organic, inorganic and biochemical compounds which are commercially available. This is the only complete source that covers the purification of laboratory chemicals that are commercially available in this manner and format.* Complete update of this valuable, well-known reference* Provides purification procedures of commercially available chemicals and biochemicals* Includes an extremely useful compilation of ionisation constants
During the past two decades, many books, governmental reports and regu lations on safety measures against chemieals, fire, microbiological and radioactive hazards in laboratories have been published from various coun tries. These topics have also been briefly discussed in books on laboratory planning and management. The application ofvarious scientific instruments based on different ionizing and non-ionizing radiations have brought new safety problems to the laboratory workers of today, irrespective of their scientific disciplines, be they medicine, natural or life sciences. However, no comprehensive laboratory handbook dealing with aIl these hazards, some of which are recently introduced, had so far been available in a single volume. Therefore, it was thought worthwhile to publish this Handbook on safety and health measures for laboratories, with contributions from several experts on these subjects. As this second edition of the Handbook, like the first edition, is a multiauthor volume, some duplication in conte nt among chapters is unavoidable in order to maintain the context of a chapter as weIl as make each chapter complete. An attempt has also been made to maintain the central theme, which is how to work in a laboratory with maximum possible environmental safety.
Biosafety in the Laboratory is a concise set of practical guidelines for handling and disposing of biohazardous material. The consensus of top experts in laboratory safety, this volume provides the information needed for immediate improvement of safety practices. It discusses high- and low-risk biological agents (including the highest-risk materials handled in labs today), presents the "seven basic rules of biosafety," addresses special issues such as the shipping of dangerous materials, covers waste disposal in detail, offers a checklist for administering laboratory safetyâ€"and more.
This volume updates and combines two National Academy Press bestsellers--Prudent Practices for Handling Hazardous Chemicals in Laboratories and Prudent Practices for Disposal of Chemicals from Laboratories--which have served for more than a decade as leading sources of chemical safety guidelines for the laboratory. Developed by experts from academia and industry, with specialties in such areas as chemical sciences, pollution prevention, and laboratory safety, Prudent Practices for Safety in Laboratories provides step-by-step planning procedures for handling, storage, and disposal of chemicals. The volume explores the current culture of laboratory safety and provides an updated guide to federal regulations. Organized around a recommended workflow protocol for experiments, the book offers prudent practices designed to promote safety and it includes practical information on assessing hazards, managing chemicals, disposing of wastes, and more. Prudent Practices for Safety in Laboratories is essential reading for people working with laboratory chemicals: research chemists, technicians, safety officers, chemistry educators, and students.