Since the publication of the best-selling first edition, much has been discovered about Saccharomyces cerevisiae, the single-celled fungus commonly known as baker's yeast or brewer's yeast that is the basis for much of our understanding of the molecular and cellular biology of eukaryotes. This wealth of new research data demands our attention and r
This text emphasises the importance of staying informed about Saccharomyces cerevisiae as it provides the intellectual basis for much of the molecular and cellular biology of eukaryotes. It offers yeast users a concise account of the metabolism and physiology of this organism. Chapters include: life cycle and morphogenesis; carbon metabolism, nitrogen metabolism; lipids and membranes; protein trafficking; and phosphorlation and dephosphorylation of protein and stress response. This book is for second and final year undergraduates in microbiology, biotechnology and applied biology, postgraduate and doctural researchers working on yeast, and researchers and managers in industries which use and exploit Saccharomyces cerevisiae.
In this volume we aim to present an easy-to-read account of the genus Saccharomyces that we hope will be of value to all students and researchers wishing to exploit this important genus, be it for academic or commer cial purposes. Individual chapters have been commissioned to cover specific aspects of the biology of Saccharomyces species: growth, genetics, and metabolism, with the emphasis on methodology. Basic principles are discussed without an over-detailed, step-by-step breakdown of specific techniques, and lengthy discussions of standard molecular, biological, and biochemical techniques (e. g. , polyacrylamide gel electrophoresis, protein purification, DNA sequencing) have been avoided. We hope the volume will provide a quick reference to the current status of a wide range of Saccharomyces-specific methodologies without focusing ex clusively on recent developments in molecular techniques which can be found in the ever increasing numbers of "cloning manuals. " By necessity, much of what is described in this volume concentrates on one particular species of Saccharomyces, namely Saccharomyces cerevisiae. This is not just a reflection of the authors' interests, but indicates the extent to which this simple eukaryote has been studied by biologists from all walks of life, for all sorts of reasons. If this volume can provide a broader knowledge base to the experienced yeast researcher, or ease the path of someone just starting work with Saccharomyces, then we will have achieved our aim.
The use of non-Saccharomyces yeast species is currently a biotechnology trend in enology for which they are being broadly used to improve the sensory profile of wines because they affect aroma, color, and mouthfeel. They have become a powerful biotool to modulate the influence of global warming on grape varieties, helping to maintain the acidity, decrease the alcoholic degree, stabilize wine color, and increase freshness. In cool climates, some non-Saccharomyces can promote demalication or color stability by the formation of stable derived pigments. Additionally, non-Saccharomyces yeasts open new possibilities in biocontrol for removing spoilage yeast and bacteria or molds that can produce and release mycotoxins and, thereby, help in reducing applied SO2 levels.
New Advances in Saccharomyces is a book for yeast researchers that provides a better understanding of yeast metabolism, genetics, and metabolomics applied to the fermentation of alcoholic beverages such as wine and beer. The book is structured in three parts and twelve chapters with a significant focus on wine biotechnology. It includes numerous figures and tables with many practical data illustrating the contents and applications. This book is designed to help researchers and scientists develop or improve applications and new processes in fermentation industries for the production of beverages.
At a fundamental research level, the yeasts offer valuable opportunities for modelling regulatory and metabolic processes in multicellular eukaryotic organisms: this volume deals with the multifunctional chromosome regulatory proteins, topoisomerase and nuclear transport. A combination of biochemical and genetic approaches applied to the yeast translation system is also currently yielding a wealth of data, while the mating pheromone signal transduction pathway in yeasts provides a valuable analogue of the signal transduction components used by multicellular organisms, including receptors, G proteins, protein kinases and transcription factors. With a well-established history of fermantation studies, yeasts remain the first-choice vehicle for production of heterologous eukaryotic proteins. Interest is diversifying, as an increasing number of non-Saccharomyces species are now being utilised for the production of specific heterologous proteins. Molecular biologists, microbiologists and biochemical geneticists will find this volume an authoritative and valuable update on a vibrant area of research.
Since 1996, when the first Saccharomyces cerevisiae genome sequence was released, a wealth of genomic data has been made available for numerous S. cerevisiae strains, its close relatives, and non-conventional yeast species isolates of diverse origins. Several annotated genomes of interspecific hybrids, both within the Saccharomyces clade and outside, are now also available. This genomic information, together with functional genomics and genome engineering tools, is providing a holistic assessment of the complex cellular responses to environmental challenges, elucidating the processes underlying evolution, speciation, hybridization, domestication, and uncovering crucial aspects of yeasts´ physiological genomics to guide their biotechnological exploitation. S. cerevisiae has been used for millennia in the production of food and beverages and research over the last century and a half has generated a great deal of knowledge of this species. Despite all this, S. cerevisiae is not the best for all uses and many non-conventional yeast species have highly desirable traits that S. cerevisiae does not have. These include tolerance to different stresses (e.g. acetic acid tolerance in Zygosaccharomyces bailii, osmotolerance in Z. rouxii, and thermotolerance in Kluyveromyces marxianus and Ogataea (Hansenula) polymorpha), the capacity of assimilation of diverse carbon sources (e.g. high native capacity to metabolyze xylose and potential for the valorization of agroforest residues by Scheffersomyces (Pichia) stipites), as well as, high protein secretion, fermentation efficiency and production of desirable flavors, capacity to favor respiration over fermentation, high lipid biosynthesis and accumulation, and efficient production of chemicals other than ethanol amongst many. Several non-Saccharomyces species have already been developed as eukaryotic hosts and cell factories. Others are highly relevant as food spoilers or for desirable flavor producers. Therefore, non-conventional yeasts are now attracting increasing attention with their diversity and complexity being tackled by basic research for biotechnological applications. The interest in the exploitation of non-conventional yeasts is very high and a number of tools, such as cloning vectors, promoters, terminators, and efficient genome editing tools, have been developed to facilitate their genetic engineering. Functional and Comparative Genomics of non-conventional yeasts is elucidating the evolution of genome functions and metabolic and ecological diversity, relating their physiology to genomic features and opening the door to the application of metabolic engineering and synthetic biology to yeasts of biotechnological potential. We are entering the era of the non-conventional yeasts, increasing the exploitation of yeast biodiversity and metabolic capabilities in science and industry. In this collection the industrial properties of S. cerevisiae, in particular uses, are explored along with its closely related species and interspecific hybrids. This is followed by comparisons between S. cerevisiae and non-conventional yeasts in specific applications and then the properties of various non-conventional yeasts and their hybrids.
This book examines the value of the Saccharomyces genus in areas of agriculture and pharmaceuticals. It includes seven chapters in two sections: “Agricultural and Biotechnological Applications” and “Medical and Pharmaceutical Applications.” The chapters cover such topics as metabolic engineering of S. cerevisiae using CRISPR-Cas9. technology to produce biopharmaceuticals, fruit juice fermentation for antioxidant activity, mode of action of indigenous S. cerevisiae, the performance of Saccharomyces as an antiviral microorganism for pandemic diseases, application of yeast to study DNA repair and damage tolerance on cell cycle division, how calorie restriction can support the anti-aging process using yeast budding cells, and secondary metabolites from S. cerevisiae with anticancer activity.