Second Order Differential Equations

Second Order Differential Equations

Author: Gerhard Kristensson

Publisher: Springer Science & Business Media

Published: 2010-08-05

Total Pages: 225

ISBN-13: 1441970207

DOWNLOAD EBOOK

Second Order Differential Equations presents a classical piece of theory concerning hypergeometric special functions as solutions of second-order linear differential equations. The theory is presented in an entirely self-contained way, starting with an introduction of the solution of the second-order differential equations and then focusingon the systematic treatment and classification of these solutions. Each chapter contains a set of problems which help reinforce the theory. Some of the preliminaries are covered in appendices at the end of the book, one of which provides an introduction to Poincaré-Perron theory, and the appendix also contains a new way of analyzing the asymptomatic behavior of solutions of differential equations. This textbook is appropriate for advanced undergraduate and graduate students in Mathematics, Physics, and Engineering interested in Ordinary and Partial Differntial Equations. A solutions manual is available online.


Construction Of Integration Formulas For Initial Value Problems

Construction Of Integration Formulas For Initial Value Problems

Author: P.J. Van Der Houwen

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 282

ISBN-13: 0444601899

DOWNLOAD EBOOK

Construction of Integration Formulas for Initial Value Problems provides practice-oriented insights into the numerical integration of initial value problems for ordinary differential equations. It describes a number of integration techniques, including single-step methods such as Taylor methods, Runge-Kutta methods, and generalized Runge-Kutta methods. It also looks at multistep methods and stability polynomials. Comprised of four chapters, this volume begins with an overview of definitions of important concepts and theorems that are relevant to the construction of numerical integration methods for initial value problems. It then turns to a discussion of how to convert two-point and initial boundary value problems for partial differential equations into initial value problems for ordinary differential equations. The reader is also introduced to stiff differential equations, partial differential equations, matrix theory and functional analysis, and non-linear equations. The order of approximation of the single-step methods to the differential equation is considered, along with the convergence of a consistent single-step method. There is an explanation on how to construct integration formulas with adaptive stability functions and how to derive the most important stability polynomials. Finally, the book examines the consistency, convergence, and stability conditions for multistep methods. This book is a valuable resource for anyone who is acquainted with introductory calculus, linear algebra, and functional analysis.


Computer Mathematics

Computer Mathematics

Author: Deepak Kapur

Publisher: Springer Science & Business Media

Published: 2008-09-29

Total Pages: 369

ISBN-13: 3540878262

DOWNLOAD EBOOK

This book constitutes thoroughly refereed post-conference proceedings of the 8th Asian Symposium on Computer Mathematics, ASCM 2007, held in Singapore in December 2007. The 22 revised full papers and 5 revised poster papers presented together with 3 invited lectures were carefully selected during two rounds of reviewing and improvement from 65 submissions. The papers are organized in topical sections on algorithms and implementations, numerical methods and applications, cryptology, and computational logic.


Chemical Modelling

Chemical Modelling

Author: Michael Springborg

Publisher: Royal Society of Chemistry

Published: 2010-10-05

Total Pages: 350

ISBN-13: 1847550754

DOWNLOAD EBOOK

Reflecting the growing volume of published work in this field, researchers will find this book an invaluable source of information on current methods and applications.


Recent Advances in Differential Equations and Applications

Recent Advances in Differential Equations and Applications

Author: Juan Luis García Guirao

Publisher: Springer

Published: 2019-01-04

Total Pages: 250

ISBN-13: 3030003418

DOWNLOAD EBOOK

This work gathers a selection of outstanding papers presented at the 25th Conference on Differential Equations and Applications / 15th Conference on Applied Mathematics, held in Cartagena, Spain, in June 2017. It supports further research into both ordinary and partial differential equations, numerical analysis, dynamical systems, control and optimization, trending topics in numerical linear algebra, and the applications of mathematics to industry. The book includes 14 peer-reviewed contributions and mainly addresses researchers interested in the applications of mathematics, especially in science and engineering. It will also greatly benefit PhD students in applied mathematics, engineering and physics.


Numerical Methods for Differential Equations

Numerical Methods for Differential Equations

Author: J.R. Dormand

Publisher: CRC Press

Published: 1996-02-21

Total Pages: 390

ISBN-13: 9780849394331

DOWNLOAD EBOOK

With emphasis on modern techniques, Numerical Methods for Differential Equations: A Computational Approach covers the development and application of methods for the numerical solution of ordinary differential equations. Some of the methods are extended to cover partial differential equations. All techniques covered in the text are on a program disk included with the book, and are written in Fortran 90. These programs are ideal for students, researchers, and practitioners because they allow for straightforward application of the numerical methods described in the text. The code is easily modified to solve new systems of equations. Numerical Methods for Differential Equations: A Computational Approach also contains a reliable and inexpensive global error code for those interested in global error estimation. This is a valuable text for students, who will find the derivations of the numerical methods extremely helpful and the programs themselves easy to use. It is also an excellent reference and source of software for researchers and practitioners who need computer solutions to differential equations.


Computational Mathematics and Applications

Computational Mathematics and Applications

Author: Dia Zeidan

Publisher: Springer

Published: 2020-11-24

Total Pages: 277

ISBN-13: 9789811584978

DOWNLOAD EBOOK

This book is a collection of invited and reviewed chapters on state-of-the-art developments in interdisciplinary mathematics. The book discusses recent developments in the fields of theoretical and applied mathematics, covering areas of interest to mathematicians, scientists, engineers, industrialists, researchers, faculty, and students. Readers will be exposed to topics chosen from a wide range of areas including differential equations, integral reforms, operational calculus, numerical analysis, fluid mechanics, and computer science. The aim of the book is to provide brief and reliably expressed research topics that will enable those new or not aware of mathematical sciences in this part of the world. While the book has not been precisely planned to address any branch of mathematics, it presents contributions of the relevant topics to do so. The topics chosen for the book are those that we have found of significant interest to many researchers in the world. These also are topics that are applicable in many fields of computational and applied mathematics. This book constitutes the first attempt in Jordanian literature to scientifically consider the extensive need of research development at the national and international levels with which mathematics deals. The book grew not only from the international collaboration between the authors but rather from the long need for a research-based book from different parts of the world for researchers and professionals working in computational and applied mathematics.


Flowing Matter

Flowing Matter

Author: Federico Toschi

Publisher: Springer Nature

Published: 2019-09-25

Total Pages: 313

ISBN-13: 3030233707

DOWNLOAD EBOOK

This open access book, published in the Soft and Biological Matter series, presents an introduction to selected research topics in the broad field of flowing matter, including the dynamics of fluids with a complex internal structure -from nematic fluids to soft glasses- as well as active matter and turbulent phenomena. Flowing matter is a subject at the crossroads between physics, mathematics, chemistry, engineering, biology and earth sciences, and relies on a multidisciplinary approach to describe the emergence of the macroscopic behaviours in a system from the coordinated dynamics of its microscopic constituents. Depending on the microscopic interactions, an assembly of molecules or of mesoscopic particles can flow like a simple Newtonian fluid, deform elastically like a solid or behave in a complex manner. When the internal constituents are active, as for biological entities, one generally observes complex large-scale collective motions. Phenomenology is further complicated by the invariable tendency of fluids to display chaos at the large scales or when stirred strongly enough. This volume presents several research topics that address these phenomena encompassing the traditional micro-, meso-, and macro-scales descriptions, and contributes to our understanding of the fundamentals of flowing matter. This book is the legacy of the COST Action MP1305 “Flowing Matter”.