Offers answers to challenges in clinical immunology. This book contains immunology knowledge and includes a companion web site to give you two ways to find the answers you need.
Inflammation is a central mechanism in many neurological diseases, including stroke, multiple sclerosis, and brain trauma as well as meningitis and contributes to the generation of pain. We are now beginning to understand the impact of the immune system on different nervous system functions and diseases, ranging from damage through tolerance to modulation and repair.This book discusses some of the more common neuro-inflammatory diseases. Topics covered include multiple sclerosis, optic neuritis and Susac syndrome. - Comprehensive review of the latest developments in neuroinflammation - Includes contributions from leading authorities
Neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease, are a growing problem across the world’s aging population. Oxidative stress in the brain plays a central role in a common pathophysiology of these diseases. This book presents scientific research on the potential of antioxidant therapy in the prevention and treatment of neurodegenerative disorders. This book outlines the roles of oxidative stress and diabetes mellitus in neurodegeneration, describes the molecular mechanisms of neurodegenerative disorders including the roles of environmental pollutants and inflammatory responses, and explores mitochondrial dysfunction. It then describes the protective abilities of antioxidants – including vitamin D, tocotrienol and coenzyme Q10 – against neurodegeneration. The book demonstrates the therapeutic potential of ketogenic diets, and highlights the roles of medicinal plants, phytopharmaceuticals, traditional medicines and food nutrients in neuroprotection. Key Features: Explains damage caused by numerous neurodegenerative disorders and the possible protection offered by antioxidants and functional foods. Describes molecular mechanisms of neurodegeneration by oxidative stress, advancing age, diabetes and mitochondrial dysfunctions. Demonstrates protection offered by nutraceuticals, antioxidants, botanical extracts and functional foods. The book contains twenty-three chapters divided into six sections written by leading researchers. This book is essential reading for health professionals, dietitians, food and nutrition scientists and anyone wanting to improve their knowledge of etiology of neurodegenerative diseases.
Neurofibrillary tangles (NFTs) composed of intracellular aggregates of tau protein are a key neuropathological feature of Alzheimer’s Disease (AD) and other neurodegenerative diseases, collectively termed tauopathies. The abundance of NFTs has been reported to correlate positively with the severity of cognitive impairment in AD. However, accumulating evidences derived from studies of experimental models have identified that NFTs themselves may not be neurotoxic. Now, many of tau researchers are seeking a “toxic” form of tau protein. Moreover, it was suggested that a “toxic” tau was capable to seed aggregation of native tau protein and to propagate in a prion-like manner. However, the exact neurotoxic tau species remain unclear. Because mature tangles seem to be non-toxic component, “tau oligomers” as the candidate of “toxic” tau have been investigated for more than one decade. In this topic, we will discuss our consensus of “tau oligomers” because the term of “tau oligomers” [e.g. dimer (disulfide bond-dependent or independent), multimer (more than dimer), granular (definition by EM or AFM) and maybe small filamentous aggregates] has been used by each researchers definition. From a biochemical point of view, tau protein has several unique characteristics such as natively unfolded conformation, thermo-stability, acid-stability, and capability of post-translational modifications. Although tau protein research has been continued for a long time, we are still missing the mechanisms of NFT formation. It is unclear how the conversion is occurred from natively unfolded protein to abnormally mis-folded protein. It remains unknown how tau protein can be formed filaments [e.g. paired helical filament (PHF), straight filament and twisted filament] in cells albeit in vitro studies confirmed tau self-assembly by several inducing factors. Researchers are still debating whether tau oligomerization is primary event rather than tau phosphorylation in the tau pathogenesis. Inhibition of either tau phosphorylation or aggregation has been investigated for the prevention of tauopathies, however, it will make an irrelevant result if we don’t know an exact target of neurotoxicity. It is a time to have a consensus of definition, terminology and methodology for the identification of “tau oligomers”.
Impairment of energy metabolism is a hallmark of brain aging and several neurodegenerative diseases, such as the Alzheimer’s disease (AD). Age- and disease-related hypometabolism is commonly associated with oxidative stress and they are both regarded as major contributors to the decline in synaptic plasticity and cognition. Neuroinflammatory changes, entailing microglial activation and elevated expression of inflammatory cytokines, also correlate with age-related cognitive decline. It is still under debate whether the mitochondrial dysfunction-induced metabolic deficits or the microglia activation-mediated neuroinflammation is the initiator of the cognitive changes in aging and AD. Nevertheless, multiple lines of evidence support the notion that mitochondrial dysfunction and chronic inflammation exacerbate each other, and these mechanistic diversities have cellular redox dysregulation as a common denominator. This research topic focuses on the role of a metabolic-inflammatory axis encompassing the bioenergetic activity, brain inflammatory responses and their redox regulation in healthy brain aging and neurodegenerative diseases. Dynamic interactions among these systems are reviewed in terms of their causative or in-tandem occurrence and how the systemic environment, –e.g., insulin resistance, diabetes, and systemic inflammation–, impacts on brain function.
There is now considerable genetic evidence that the type 4 allele of the apolipoprotein E gene is a major susceptibility factor associated with late-onset Alzheimer's disease, the common form of the disease defined as starting after sixty years of age. The role of apolipoprotein E in normal brain metabolism and in the pathogenesis of Alzheimer's disease are new and exciting avenues of research. This book, written by the most outstanding scientists in this new filed, is the first presentation of results concerning the implications of apolipoprotein E on the genetics, cell biology, neuropathology, biochemistry, and therapeutic management of Alzheimer's disease.
This open access book focuses on imaging of the musculoskeletal diseases. Over the last few years, there have been considerable advances in this area, driven by clinical as well as technological developments. The authors are all internationally renowned experts in their field. They are also excellent teachers, and provide didactically outstanding chapters. The book is disease-oriented and covers all relevant imaging modalities, with particular emphasis on magnetic resonance imaging. Important aspects of pediatric imaging are also included. IDKD books are completely re-written every four years. As a result, they offer a comprehensive review of the state of the art in imaging. The book is clearly structured with learning objectives, abstracts, subheadings, tables and take-home points, supported by design elements to help readers easily navigate through the text. As an IDKD book, it is particularly valuable for general radiologists, radiology residents, and interventional radiologists who want to update their diagnostic knowledge, and for clinicians interested in imaging as it relates to their specialty.
This book, written by members of the European network PROTEOSTASIS, provides an up-to-date review of the research regarding protein homeostasis in health and disease. With new discoveries contributing to the increasing complexity of this topic, the book offers a detailed overview of the pathways regulating protein homeostasis, including autophagy and the ubiquitin protein family. Following a basic introduction, it explains how defects in protein homeostasis contribute to numerous pathologies, including cancer, neurodegeneration, inflammation and a number of rare diseases. In addition, it discusses, the role of protein homeostasis in cellular development and physiology. Highlighting the latest research in the field of protein homeostasis and its implications for various clinically relevant diseases, the book appeals to researchers and clinicians, while also offering a reference guide for scholars who are new to the field.
Oxidative stress is the result of an imbalance in pro-oxidant/antioxidant homeostasis that leads to the generation of toxic reactive oxygen species. Brain cells are continuously exposed to reactive oxygen species generated by oxidative metabolism, and in certain pathological conditions defense mechanisms against oxygen radicals may be weakened and/or overwhelmed. DNA is a potential target for oxidative damage, and genomic damage can contribute to neuropathogenesis. It is important therefore to identify tools for the quantitative analysis of DNA damage in models on neurological disorders. This book presents detailed information on various neurodegenerative disorders and their connection with oxidative stress. This information will provide clinicians with directions to treat these disorders with appropriate therapy and is also of vital importance for the drug industries for the design of new drugs for treatment of degenerative disorders.* Contains the latest information on the subject of neurodegenerative disorders* Reflects on various factors involved in degeneration and gives suggestions for how to tackle these problems