Robust Synchronization of Chaotic Systems via Feedback

Robust Synchronization of Chaotic Systems via Feedback

Author: Ricardo Femat

Publisher: Springer

Published: 2009-01-23

Total Pages: 205

ISBN-13: 3540693076

DOWNLOAD EBOOK

This pages include the results derived during last ten years about both suppression and synchronization of chaotic -continuous time- systems. Along this time, our concept was to study how the intrinsic properties of dynamical systems can be exploited to suppress and to synchronize the chaotic behavior and what synchronization phen- ena can be found under feedback interconnection. Our findings have caused surprise to us and have stimulated our astonishing capability. Perhaps, reader can imagine our faces with opens eyes like children seeing around objects; which are possibly obvious for others and novel for us. A compilation of our surprises about these findings is being described along this book. Book contains both objectives to share our ama- ment and to show our perspective on synchronization of chaotic systems. Thus, while we were writing the preface, we discussed its scope. Thinking as a book readers, we found that a preface should answer, in few words, the following question: What can the reader find in this book?, reader can find our steps toward understanding of c- otic behavior and the possibility of suppressing and synchronizing it. We firstly show the chaos suppression form experimental domain to potential implementation in high tech system as a levitation system based on High Temperature Superconductors (HTS). This chapter is used as departing point towards a more complicated problem the chaotic synchronization. Then, reader travels by the synchronization of the chaotic behavior world throughout distinct feedback approaches.


Robust Synchronization of Chaotic Systems via Feedback

Robust Synchronization of Chaotic Systems via Feedback

Author: Ricardo Femat

Publisher: Springer

Published: 2009-08-29

Total Pages: 202

ISBN-13: 9783540865261

DOWNLOAD EBOOK

This pages include the results derived during last ten years about both suppression and synchronization of chaotic -continuous time- systems. Along this time, our concept was to study how the intrinsic properties of dynamical systems can be exploited to suppress and to synchronize the chaotic behavior and what synchronization phen- ena can be found under feedback interconnection. Our findings have caused surprise to us and have stimulated our astonishing capability. Perhaps, reader can imagine our faces with opens eyes like children seeing around objects; which are possibly obvious for others and novel for us. A compilation of our surprises about these findings is being described along this book. Book contains both objectives to share our ama- ment and to show our perspective on synchronization of chaotic systems. Thus, while we were writing the preface, we discussed its scope. Thinking as a book readers, we found that a preface should answer, in few words, the following question: What can the reader find in this book?, reader can find our steps toward understanding of c- otic behavior and the possibility of suppressing and synchronizing it. We firstly show the chaos suppression form experimental domain to potential implementation in high tech system as a levitation system based on High Temperature Superconductors (HTS). This chapter is used as departing point towards a more complicated problem the chaotic synchronization. Then, reader travels by the synchronization of the chaotic behavior world throughout distinct feedback approaches.


Robust Engineering Designs of Partial Differential Systems and Their Applications

Robust Engineering Designs of Partial Differential Systems and Their Applications

Author: Bor-Sen Chen

Publisher: CRC Press

Published: 2021-12-23

Total Pages: 255

ISBN-13: 1000514099

DOWNLOAD EBOOK

Most systems in science, engineering, and biology are of partial differential systems (PDSs) modeled by partial differential equations. Many books about partial differential equations have been written by mathematicians and mainly address some fundamental mathematic backgrounds and discuss some mathematic properties of partial differential equations. Only a few books on PDSs have been written by engineers; however, these books have focused mainly on the theoretical stabilization analysis of PDSs, especially mechanical systems. This book investigates both robust stabilization control design and robust filter design and reference tracking control design in mechanical, signal processing, and control systems to fill a gap in the study of PDSs. Robust Engineering Designs of Partial Differential Systems and Their Applications offers some fundamental background in the first two chapters. The rest of the chapters focus on a specific design topic with a corresponding deep investigation into robust H∞ filtering, stabilization, or tracking design for more complex and practical PDSs under stochastic fluctuation and external disturbance. This book is aimed at engineers and scientists and addresses the gap between the theoretical stabilization results of PDSs in academic and practical engineering designs more focused on the robust H∞ filtering, stabilization, and tracking control problems of linear and nonlinear PDSs under intrinsic random fluctuation and external disturbance in industrial applications. Part I provides backgrounds on PDSs, such as Galerkin’s, and finite difference methods to approximate PDSs and a fuzzy method to approximate nonlinear PDSs. Part II examines robust H∞ filter designs for the robust state estimation of linear and nonlinear stochastic PDSs. And Part III treats robust H∞ stabilization and tracking control designs of linear and nonlinear PDSs. Every chapter focuses on an engineering design topic with both theoretical design analysis and practical design examples.


Robust Synchronization of Chaotic Systems via Feedback

Robust Synchronization of Chaotic Systems via Feedback

Author: Ricardo Femat

Publisher: Springer Science & Business Media

Published: 2008-10-16

Total Pages: 205

ISBN-13: 3540693068

DOWNLOAD EBOOK

This pages include the results derived during last ten years about both suppression and synchronization of chaotic -continuous time- systems. Along this time, our concept was to study how the intrinsic properties of dynamical systems can be exploited to suppress and to synchronize the chaotic behavior and what synchronization phen- ena can be found under feedback interconnection. Our findings have caused surprise to us and have stimulated our astonishing capability. Perhaps, reader can imagine our faces with opens eyes like children seeing around objects; which are possibly obvious for others and novel for us. A compilation of our surprises about these findings is being described along this book. Book contains both objectives to share our ama- ment and to show our perspective on synchronization of chaotic systems. Thus, while we were writing the preface, we discussed its scope. Thinking as a book readers, we found that a preface should answer, in few words, the following question: What can the reader find in this book?, reader can find our steps toward understanding of c- otic behavior and the possibility of suppressing and synchronizing it. We firstly show the chaos suppression form experimental domain to potential implementation in high tech system as a levitation system based on High Temperature Superconductors (HTS). This chapter is used as departing point towards a more complicated problem the chaotic synchronization. Then, reader travels by the synchronization of the chaotic behavior world throughout distinct feedback approaches.


Handbook of Research on Artificial Intelligence Techniques and Algorithms

Handbook of Research on Artificial Intelligence Techniques and Algorithms

Author: Vasant, Pandian

Publisher: IGI Global

Published: 2014-11-30

Total Pages: 913

ISBN-13: 1466672595

DOWNLOAD EBOOK

For decades, optimization methods such as Fuzzy Logic, Artificial Neural Networks, Firefly, Simulated annealing, and Tabu search, have been capable of handling and tackling a wide range of real-world application problems in society and nature. Analysts have turned to these problem-solving techniques in the event during natural disasters and chaotic systems research. The Handbook of Research on Artificial Intelligence Techniques and Algorithms highlights the cutting edge developments in this promising research area. This premier reference work applies Meta-heuristics Optimization (MO) Techniques to real world problems in a variety of fields including business, logistics, computer science, engineering, and government. This work is particularly relevant to researchers, scientists, decision-makers, managers, and practitioners.


Homogeneous Polynomial Forms for Robustness Analysis of Uncertain Systems

Homogeneous Polynomial Forms for Robustness Analysis of Uncertain Systems

Author: Graziano Chesi

Publisher: Springer Science & Business Media

Published: 2009-07-13

Total Pages: 209

ISBN-13: 1848827814

DOWNLOAD EBOOK

This book presents a number of techniques for robustness analysis of uncertain systems. In it, convex relaxations for several robustness problems are derived by exploiting and providing new results on the theory of homogenous polynomial forms.


Fractional Order Control and Synchronization of Chaotic Systems

Fractional Order Control and Synchronization of Chaotic Systems

Author: Ahmad Taher Azar

Publisher: Springer

Published: 2017-02-27

Total Pages: 873

ISBN-13: 3319502492

DOWNLOAD EBOOK

The book reports on the latest advances in and applications of fractional order control and synchronization of chaotic systems, explaining the concepts involved in a clear, matter-of-fact style. It consists of 30 original contributions written by eminent scientists and active researchers in the field that address theories, methods and applications in a number of research areas related to fractional order control and synchronization of chaotic systems, such as: fractional chaotic systems, hyperchaotic systems, complex systems, fractional order discrete chaotic systems, chaos control, chaos synchronization, jerk circuits, fractional chaotic systems with hidden attractors, neural network, fuzzy logic controllers, behavioral modeling, robust and adaptive control, sliding mode control, different types of synchronization, circuit realization of chaotic systems, etc. In addition to providing readers extensive information on chaos fundamentals, fractional calculus, fractional differential equations, fractional control and stability, the book also discusses key applications of fractional order chaotic systems, as well as multidisciplinary solutions developed via control modeling. As such, it offers the perfect reference guide for graduate students, researchers and practitioners in the areas of fractional order control systems and fractional order chaotic systems.


Dynamical Systems with Applications using MATLAB®

Dynamical Systems with Applications using MATLAB®

Author: Stephen Lynch

Publisher: Springer

Published: 2014-07-22

Total Pages: 519

ISBN-13: 3319068202

DOWNLOAD EBOOK

This textbook, now in its second edition, provides a broad introduction to both continuous and discrete dynamical systems, the theory of which is motivated by examples from a wide range of disciplines. It emphasizes applications and simulation utilizing MATLAB®, Simulink®, the Image Processing Toolbox® and the Symbolic Math toolbox®, including MuPAD. Features new to the second edition include · sections on series solutions of ordinary differential equations, perturbation methods, normal forms, Gröbner bases, and chaos synchronization; · chapters on image processing and binary oscillator computing; · hundreds of new illustrations, examples, and exercises with solutions; and · over eighty up-to-date MATLAB program files and Simulink model files available online. These files were voted MATLAB Central Pick of the Week in July 2013. The hands-on approach of Dynamical Systems with Applications using MATLAB, Second Edition, has minimal prerequisites, only requiring familiarity with ordinary differential equations. It will appeal to advanced undergraduate and graduate students, applied mathematicians, engineers, and researchers in a broad range of disciplines such as population dynamics, biology, chemistry, computing, economics, nonlinear optics, neural networks, and physics. Praise for the first edition Summing up, it can be said that this text allows the reader to have an easy and quick start to the huge field of dynamical systems theory. MATLAB/SIMULINK facilitate this approach under the aspect of learning by doing. —OR News/Operations Research Spectrum The MATLAB programs are kept as simple as possible and the author's experience has shown that this method of teaching using MATLAB works well with computer laboratory classes of small sizes.... I recommend ‘Dynamical Systems with Applications using MATLAB’ as a good handbook for a diverse readership: graduates and professionals in mathematics, physics, science and engineering. —Mathematica


Robust Adaptive Control for Fractional-Order Systems with Disturbance and Saturation

Robust Adaptive Control for Fractional-Order Systems with Disturbance and Saturation

Author: Mou Chen

Publisher: John Wiley & Sons

Published: 2017-10-20

Total Pages: 254

ISBN-13: 1119393337

DOWNLOAD EBOOK

A treatise on investigating tracking control and synchronization control of fractional-order nonlinear systems with system uncertainties, external disturbance, and input saturation Robust Adaptive Control for Fractional-Order Systems, with Disturbance and Saturation provides the reader with a good understanding on how to achieve tracking control and synchronization control of fractional-order nonlinear systems with system uncertainties, external disturbance, and input saturation. Although some texts have touched upon control of fractional-order systems, the issues of input saturation and disturbances have rarely been considered together. This book offers chapter coverage of fractional calculus and fractional-order systems; fractional-order PID controller and fractional-order disturbance observer; design of fractional-order controllers for nonlinear chaotic systems and some applications; sliding mode control for fractional-order nonlinear systems based on disturbance observer; disturbance observer based neural control for an uncertain fractional-order rotational mechanical system; adaptive neural tracking control for uncertain fractional-order chaotic systems subject to input saturation and disturbance; stabilization control of continuous-time fractional positive systems based on disturbance observer; sliding mode synchronization control for fractional-order chaotic systems with disturbance; and more. Based on the approximation ability of the neural network (NN), the adaptive neural control schemes are reported for uncertain fractional-order nonlinear systems Covers the disturbance estimation techniques that have been developed to alleviate the restriction faced by traditional feedforward control and reject the effect of external disturbances for uncertain fractional-order nonlinear systems By combining the NN with the disturbance observer, the disturbance observer based adaptive neural control schemes have been studied for uncertain fractional-order nonlinear systems with unknown disturbances Considers, together, the issue of input saturation and the disturbance for the control of fractional-order nonlinear systems in the present of system uncertainty, external disturbance, and input saturation Robust Adaptive Control for Fractional-Order Systems, with Disturbance and Saturation can be used as a reference for the academic research on fractional-order nonlinear systems or used in Ph.D. study of control theory and engineering.


Chaotic Secure Communication

Chaotic Secure Communication

Author: Kehui Sun

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2016-09-26

Total Pages: 348

ISBN-13: 3110434067

DOWNLOAD EBOOK

The monograph begins with a systematic introduction of chaos and chaos synchronization, and then extends to the methodologies and technologies in secure communication system design and implementation. The author combines theoretical frameworks with empirical studies, making the book a pratical reference for both academics and industrial engineers.