Robust Project Scheduling is to review the fundamentals of robust project scheduling through the deployment of proactive/reactive project scheduling procedures.
This title presents a large variety of models and algorithms dedicated to the resource-constrained project scheduling problem (RCPSP), which aims at scheduling at minimal duration a set of activities subject to precedence constraints and limited resource availabilities. In the first part, the standard variant of RCPSP is presented and analyzed as a combinatorial optimization problem. Constraint programming and integer linear programming formulations are given. Relaxations based on these formulations and also on related scheduling problems are presented. Exact methods and heuristics are surveyed. Computational experiments, aiming at providing an empirical insight on the difficulty of the problem, are provided. The second part of the book focuses on several other variants of the RCPSP and on their solution methods. Each variant takes account of real-life characteristics which are not considered in the standard version, such as possible interruptions of activities, production and consumption of resources, cost-based approaches and uncertainty considerations. The last part presents industrial case studies where the RCPSP plays a central part. Applications are presented in various domains such as assembly shop and rolling ingots production scheduling, project management in information technology companies and instruction scheduling for VLIW processor architectures.
Project management can be broadly defined as the process of managing, allocating and timing resources to achieve given objectives in an efficient and expedient manner. The objectives of the book cover three areas: classification; procedures; and problems.
Optimal and Robust Scheduling for Networked Control Systems tackles the problem of integrating system components—controllers, sensors, and actuators—in a networked control system. It is common practice in industry to solve such problems heuristically, because the few theoretical results available are not comprehensive and cannot be readily applied by practitioners. This book offers a solution to the deterministic scheduling problem that is based on rigorous control theoretical tools but also addresses practical implementation issues. Helping to bridge the gap between control theory and computer science, it suggests that the consideration of communication constraints at the design stage will significantly improve the performance of the control system. Technical Results, Design Techniques, and Practical Applications The book brings together well-known measures for robust performance as well as fast stochastic algorithms to assist designers in selecting the best network configuration and guaranteeing the speed of offline optimization. The authors propose a unifying framework for modelling NCSs with time-triggered communication and present technical results. They also introduce design techniques, including for the codesign of a controller and communication sequence and for the robust design of a communication sequence for a given controller. Case studies explore the use of the FlexRay TDMA and time-triggered control area network (CAN) protocols in an automotive control system. Practical Solutions to Your Time-Triggered Communication Problems This unique book develops ready-to-use engineering tools for large-scale control system integration with a focus on robustness and performance. It emphasizes techniques that are directly applicable to time-triggered communication problems in the automotive industry and in avionics, robotics, and automated manufacturing.
A project planning and decision support model is developed and applied to identify and reduce risk and uncertainty in deconstruction project planning. It allows calculating building inventories based on sensor information and construction standards and it computes robust project plans for different scenarios with multiple modes, constrained renewable resources and locations. A reactive and flexible planning element is proposed in the case of schedule infeasibility during project execution.
Due to the increasing importance of product differentiation and collapsing product life cycles, a growing number of value-adding activities in the industry and service sector are organized in projects. Projects come in many forms, often taking considerable time and consuming a large amount of resources. The management and scheduling of projects represents a challenging task and project performance may have a considerable impact on an organization's competitiveness. This handbook presents state-of-the-art approaches to project management and scheduling. More than sixty contributions written by leading experts in the field provide an authoritative survey of recent developments. The book serves as a comprehensive reference, both, for researchers and project management professionals. The handbook consists of two volumes. Volume 1 is devoted to single-modal and multi-modal project scheduling. Volume 2 presents multi-project problems, project scheduling under uncertainty and vagueness, managerial approaches and a separate part on applications, case studies and information systems.
This book provides a broad overview of project and project management principles, processes, and success/failure factors. It also provides a state of the art of applications of the project management concepts, especially in the field of construction projects, based on the Project Management Body of Knowledge (PMBOK). The slate of geographically and professionally diverse authors illustrates project management as a multidisciplinary undertaking that integrates renewable and non-renewable resources in a systematic process to achieve project goals. The book describes assessment based on technical and operational goals and meeting schedules and budgets.
Due to the increasing importance of product differentiation and collapsing product life cycles, a growing number of value-adding activities in the industry and service sector are organized in projects. Projects come in many forms, often taking considerable time and consuming a large amount of resources. The management and scheduling of projects represents a challenging task, and project performance may have a considerable impact on an organization's competitiveness. This handbook presents state-of-the-art approaches to project management and scheduling. More than sixty contributions written by leading experts in the field provide an authoritative survey of recent developments. The book serves as a comprehensive reference, both, for researchers and project management professionals. The handbook consists of two volumes. Volume 1 is devoted to single-modal and multi-modal project scheduling. Volume 2 presents multi-project problems, project scheduling under uncertainty and vagueness, managerial approaches and a separate part on applications, case studies and information systems.
This Handbook was the first APM Body of Knowledge Approved title for the Association for Project Management. Over the course of five editions, Gower Handbook of Project Management has become the definitive desk reference for project management practitioners. The Handbook gives an introduction to, and overview of, the essential knowledge required for managing projects. The team of expert contributors, selected to introduce the reader to the knowledge and skills required to manage projects, includes many of the most experienced and highly regarded international writers and practitioners. The Fifth Edition has been substantially restructured. All but two of the authors are new, reflecting the fast-changing and emerging perspectives on projects and their management. The four sections in the book describe: ¢ Projects, their context, value and how they are connected to organizational strategy; ¢ Performance: describing how to manage the delivery of the project, covering scope, quality, cost, time, resources, risk and sustainability ¢ Process: from start up to close down ¢ Portfolio: the project and its relationship to the organization The discrete nature of each chapter makes this Handbook a wonderful source of advice and background theory that is easy to consult. Gower Handbook of Project Management is an encyclopaedia for the discipline and profession of project management; a bible for project clients, contractors and students.
The book is devoted to structural issues, algorithms, and applications of resource allocation problems in project management. Special emphasis is given to a unifying framework within which a large variety of project scheduling problems can be treated. Those problems involve general temporal constraints among project activities, different types of scarce resources, and a broad class of regular and nonregular objective functions ranging from time-based and financial to resource levelling functions. The diversity of the models proposed allows for covering many features arising in scheduling applications beyond the field of project management such as short-term production planning in the manufacturing or process industries.