Robust Matrix Completion State Estimation in Distribution Systems: Preprint

Robust Matrix Completion State Estimation in Distribution Systems: Preprint

Author:

Publisher:

Published: 2019

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Due to the insufficient measurements in the distribution system state estimation (DSSE), full observability and redundant measurements are difficult to achieve without using the pseudo measurements. The matrix completion state estimation (MCSE) combines the matrix completion and power system model to estimate voltage by exploring the low-rank characteristics of the matrix. This paper proposes a robust matrix completion state estimation (RMCSE) to estimate the voltage in a distribution system under a low-observability condition. Tradition state estimation weighted least squares (WLS) method requires full observability to calculate the states and needs redundant measurements to proceed a bad data detection. The proposed method improves the robustness of the MCSE to bad data by minimizing the rank of the matrix and measurements residual with different weights. It can estimate the system state in a low-observability system and has robust estimates without the bad data detection process in the face of multiple bad data. The method is numerically evaluated on the IEEE 33-node radial distribution system. The estimation performance and robustness of RMCSE are compared with the WLS with the largest normalized residual bad data identification (WLS-LNR), and the MCSE.


Power System State Estimation

Power System State Estimation

Author: Ali Abur

Publisher: CRC Press

Published: 2004-03-24

Total Pages: 350

ISBN-13: 9780203913673

DOWNLOAD EBOOK

Offering an up-to-date account of the strategies utilized in state estimation of electric power systems, this text provides a broad overview of power system operation and the role of state estimation in overall energy management. It uses an abundance of examples, models, tables, and guidelines to clearly examine new aspects of state estimation, the testing of network observability, and methods to assure computational efficiency. Includes numerous tutorial examples that fully analyze problems posed by the inclusion of current measurements in existing state estimators and illustrate practical solutions to these challenges. Written by two expert researchers in the field, Power System State Estimation extensively details topics never before covered in depth in any other text, including novel robust state estimation methods, estimation of parameter and topology errors, and the use of ampere measurements for state estimation. It introduces various methods and computational issues involved in the formulation and implementation of the weighted least squares (WLS) approach, presents statistical tests for the detection and identification of bad data in system measurements, and reveals alternative topological and numerical formulations for the network observability problem.


State Estimation for Robotics

State Estimation for Robotics

Author: Timothy D. Barfoot

Publisher: Cambridge University Press

Published: 2017-07-31

Total Pages: 381

ISBN-13: 1107159393

DOWNLOAD EBOOK

A modern look at state estimation, targeted at students and practitioners of robotics, with emphasis on three-dimensional applications.


Handbook of Robust Low-Rank and Sparse Matrix Decomposition

Handbook of Robust Low-Rank and Sparse Matrix Decomposition

Author: Thierry Bouwmans

Publisher: CRC Press

Published: 2016-05-27

Total Pages: 553

ISBN-13: 1498724639

DOWNLOAD EBOOK

Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access to a number of different decompositions, algorithms, implementations, and benchmarking techniques. Divided into five parts, the book begins with an overall introduction to robust principal component analysis (PCA) via decomposition into low-rank and sparse matrices. The second part addresses robust matrix factorization/completion problems while the third part focuses on robust online subspace estimation, learning, and tracking. Covering applications in image and video processing, the fourth part discusses image analysis, image denoising, motion saliency detection, video coding, key frame extraction, and hyperspectral video processing. The final part presents resources and applications in background/foreground separation for video surveillance. With contributions from leading teams around the world, this handbook provides a complete overview of the concepts, theories, algorithms, and applications related to robust low-rank and sparse matrix decompositions. It is designed for researchers, developers, and graduate students in computer vision, image and video processing, real-time architecture, machine learning, and data mining.


Optimal State Estimation

Optimal State Estimation

Author: Dan Simon

Publisher: John Wiley & Sons

Published: 2006-06-19

Total Pages: 554

ISBN-13: 0470045337

DOWNLOAD EBOOK

A bottom-up approach that enables readers to master and apply the latest techniques in state estimation This book offers the best mathematical approaches to estimating the state of a general system. The author presents state estimation theory clearly and rigorously, providing the right amount of advanced material, recent research results, and references to enable the reader to apply state estimation techniques confidently across a variety of fields in science and engineering. While there are other textbooks that treat state estimation, this one offers special features and a unique perspective and pedagogical approach that speed learning: * Straightforward, bottom-up approach begins with basic concepts and then builds step by step to more advanced topics for a clear understanding of state estimation * Simple examples and problems that require only paper and pen to solve lead to an intuitive understanding of how theory works in practice * MATLAB(r)-based source code that corresponds to examples in the book, available on the author's Web site, enables readers to recreate results and experiment with other simulation setups and parameters Armed with a solid foundation in the basics, readers are presented with a careful treatment of advanced topics, including unscented filtering, high order nonlinear filtering, particle filtering, constrained state estimation, reduced order filtering, robust Kalman filtering, and mixed Kalman/H? filtering. Problems at the end of each chapter include both written exercises and computer exercises. Written exercises focus on improving the reader's understanding of theory and key concepts, whereas computer exercises help readers apply theory to problems similar to ones they are likely to encounter in industry. With its expert blend of theory and practice, coupled with its presentation of recent research results, Optimal State Estimation is strongly recommended for undergraduate and graduate-level courses in optimal control and state estimation theory. It also serves as a reference for engineers and science professionals across a wide array of industries.


Advances in Electric Power and Energy

Advances in Electric Power and Energy

Author: Mohamed E. El-Hawary

Publisher: John Wiley & Sons

Published: 2021-03-03

Total Pages: 512

ISBN-13: 1119480469

DOWNLOAD EBOOK

A guide to the role of static state estimation in the mitigation of potential system failures With contributions from a noted panel of experts on the topic, Advances in Electric Power and Energy: Static State Estimation addresses the wide-range of issues concerning static state estimation as a main energy control function and major tool for evaluating prevailing operating conditions in electric power systems worldwide. This book is an essential guide for system operators who must be fully aware of potential threats to the integrity of their own and neighboring systems. The contributors provide an overview of the topic and review common threats such as cascading black-outs to model-based anomaly detection to the operation of micro-grids and much more. The book also includes a discussion of an effective mathematical programming approach to state estimation in power systems. Advances in Electric Power and Energy reviews the most recent developments in the field and: Offers an introduction to the topic to help non-experts (and professionals) get up-to-date on static state estimation Covers the essential information needed to understand power system state estimation written by experts on the subject Discusses a mathematical programming approach Written for electric power system planners, operators, consultants, power system software developers, and academics, Advances in Electric Power and Energy is the authoritative guide to the topic with contributions from experts who review the most recent developments.


Feedback Systems

Feedback Systems

Author: Karl Johan Åström

Publisher: Princeton University Press

Published: 2021-02-02

Total Pages:

ISBN-13: 069121347X

DOWNLOAD EBOOK

The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory


Quantum State Estimation

Quantum State Estimation

Author: Matteo Paris

Publisher: Springer Science & Business Media

Published: 2004-08-11

Total Pages: 548

ISBN-13: 9783540223290

DOWNLOAD EBOOK

This book is a comprehensive survey of most of the theoretical and experimental achievements in the field of quantum estimation of states and operations. Albeit still quite young, this field has already been recognized as a necessary tool for research in quantum optics and quantum information, beyond being a fascinating subject in its own right since it touches upon the conceptual foundations of quantum mechanics. The book consists of twelve extensive lectures that are essentially self-contained and modular, allowing combination of various chapters as a basis for advanced courses and seminars on theoretical or experimental aspects. The last two chapters, for instance, form a self-contained exposition on quantum discrimination problems. The book will benefit graduate students and newcomers to the field as a high-level but accessible textbook, lecturers in search for advanced course material and researchers wishing to consult a modern and authoritative source of reference.