The standard theory of decision making under uncertainty advises the decision maker to form a statistical model linking outcomes to decisions and then to choose the optimal distribution of outcomes. This assumes that the decision maker trusts the model completely. But what should a decision maker do if the model cannot be trusted? Lars Hansen and Thomas Sargent, two leading macroeconomists, push the field forward as they set about answering this question. They adapt robust control techniques and apply them to economics. By using this theory to let decision makers acknowledge misspecification in economic modeling, the authors develop applications to a variety of problems in dynamic macroeconomics. Technical, rigorous, and self-contained, this book will be useful for macroeconomists who seek to improve the robustness of decision-making processes.
This book is focused on the recent developments on problems of probability model uncertainty by using the notion of nonlinear expectations and, in particular, sublinear expectations. It provides a gentle coverage of the theory of nonlinear expectations and related stochastic analysis. Many notions and results, for example, G-normal distribution, G-Brownian motion, G-Martingale representation theorem, and related stochastic calculus are first introduced or obtained by the author. This book is based on Shige Peng’s lecture notes for a series of lectures given at summer schools and universities worldwide. It starts with basic definitions of nonlinear expectations and their relation to coherent measures of risk, law of large numbers and central limit theorems under nonlinear expectations, and develops into stochastic integral and stochastic calculus under G-expectations. It ends with recent research topic on G-Martingale representation theorem and G-stochastic integral for locally integrable processes. With exercises to practice at the end of each chapter, this book can be used as a graduate textbook for students in probability theory and mathematical finance. Each chapter also concludes with a section Notes and Comments, which gives history and further references on the material covered in that chapter. Researchers and graduate students interested in probability theory and mathematical finance will find this book very useful.
This coherent introduction to the theory and methods of robust control system design clarifies and unifies the presentation of significant derivations and proofs. The book contains a thorough treatment of important material of uncertainties and robust control otherwise scattered throughout the literature.
Robust Industrial Control Systems: Optimal Design Approach for Polynomial Systems presents a comprehensive introduction to the use of frequency domain and polynomial system design techniques for a range of industrial control and signal processing applications. The solution of stochastic and robust optimal control problems is considered, building up from single-input problems and gradually developing the results for multivariable design of the later chapters. In addition to cataloguing many of the results in polynomial systems needed to calculate industrial controllers and filters, basic design procedures are also introduced which enable cost functions and system descriptions to be specified in order to satisfy industrial requirements. Providing a range of solutions to control and signal processing problems, this book: * Presents a comprehensive introduction to the polynomial systems approach for the solution of H_2 and H_infinity optimal control problems. * Develops robust control design procedures using frequency domain methods. * Demonstrates design examples for gas turbines, marine systems, metal processing, flight control, wind turbines, process control and manufacturing systems. * Includes the analysis of multi-degrees of freedom controllers and the computation of restricted structure controllers that are simple to implement. * Considers time-varying control and signal processing problems. * Addresses the control of non-linear processes using both multiple model concepts and new optimal control solutions. Robust Industrial Control Systems: Optimal Design Approach for Polynomial Systems is essential reading for professional engineers requiring an introduction to optimal control theory and insights into its use in the design of real industrial processes. Students and researchers in the field will also find it an excellent reference tool.
This is a unified collection of important recent results for the design of robust controllers for uncertain systems, primarily based on H8 control theory or its stochastic counterpart, risk sensitive control theory. Two practical applications are used to illustrate the methods throughout.
Modelling has permeated virtually all areas of industrial, environmental, economic, bio-medical or civil engineering: yet the use of models for decision-making raises a number of issues to which this book is dedicated: How uncertain is my model ? Is it truly valuable to support decision-making ? What kind of decision can be truly supported and how can I handle residual uncertainty ? How much refined should the mathematical description be, given the true data limitations ? Could the uncertainty be reduced through more data, increased modeling investment or computational budget ? Should it be reduced now or later ? How robust is the analysis or the computational methods involved ? Should / could those methods be more robust ? Does it make sense to handle uncertainty, risk, lack of knowledge, variability or errors altogether ? How reasonable is the choice of probabilistic modeling for rare events ? How rare are the events to be considered ? How far does it make sense to handle extreme events and elaborate confidence figures ? Can I take advantage of expert / phenomenological knowledge to tighten the probabilistic figures ? Are there connex domains that could provide models or inspiration for my problem ? Written by a leader at the crossroads of industry, academia and engineering, and based on decades of multi-disciplinary field experience, Modelling Under Risk and Uncertainty gives a self-consistent introduction to the methods involved by any type of modeling development acknowledging the inevitable uncertainty and associated risks. It goes beyond the “black-box” view that some analysts, modelers, risk experts or statisticians develop on the underlying phenomenology of the environmental or industrial processes, without valuing enough their physical properties and inner modelling potential nor challenging the practical plausibility of mathematical hypotheses; conversely it is also to attract environmental or engineering modellers to better handle model confidence issues through finer statistical and risk analysis material taking advantage of advanced scientific computing, to face new regulations departing from deterministic design or support robust decision-making. Modelling Under Risk and Uncertainty: Addresses a concern of growing interest for large industries, environmentalists or analysts: robust modeling for decision-making in complex systems. Gives new insights into the peculiar mathematical and computational challenges generated by recent industrial safety or environmental control analysis for rare events. Implements decision theory choices differentiating or aggregating the dimensions of risk/aleatory and epistemic uncertainty through a consistent multi-disciplinary set of statistical estimation, physical modelling, robust computation and risk analysis. Provides an original review of the advanced inverse probabilistic approaches for model identification, calibration or data assimilation, key to digest fast-growing multi-physical data acquisition. Illustrated with one favourite pedagogical example crossing natural risk, engineering and economics, developed throughout the book to facilitate the reading and understanding. Supports Master/PhD-level course as well as advanced tutorials for professional training Analysts and researchers in numerical modeling, applied statistics, scientific computing, reliability, advanced engineering, natural risk or environmental science will benefit from this book.
Volume 3 of the Encyclopedia of Financial Models The need for serious coverage of financial modeling has never been greater, especially with the size, diversity, and efficiency of modern capital markets. With this in mind, the Encyclopedia of Financial Models has been created to help a broad spectrum of individuals—ranging from finance professionals to academics and students—understand financial modeling and make use of the various models currently available. Incorporating timely research and in-depth analysis, Volume 3 of the Encyclopedia of Financial Models covers both established and cutting-edge models and discusses their real-world applications. Edited by Frank Fabozzi, this volume includes contributions from global financial experts as well as academics with extensive consulting experience in this field. Organized alphabetically by category, this reliable resource consists of forty-four informative entries and provides readers with a balanced understanding of today’s dynamic world of financial modeling. Volume 3 covers Mortgage-Backed Securities Analysis and Valuation, Operational Risk, Optimization Tools, Probability Theory, Risk Measures, Software for Financial Modeling, Stochastic Processes and Tools, Term Structure Modeling, Trading Cost Models, and Volatility Emphasizes both technical and implementation issues, providing researchers, educators, students, and practitioners with the necessary background to deal with issues related to financial modeling The 3-Volume Set contains coverage of the fundamentals and advances in financial modeling and provides the mathematical and statistical techniques needed to develop and test financial models Financial models have become increasingly commonplace, as well as complex. They are essential in a wide range of financial endeavors, and the Encyclopedia of Financial Models will help put them in perspective.
Written by Lars Peter Hansen (Nobel Laureate in Economics, 2013) and Thomas Sargent (Nobel Laureate in Economics, 2011), Uncertainty within Economic Models includes articles adapting and applying robust control theory to problems in economics and finance. This book extends rational expectations models by including agents who doubt their models and adopt precautionary decisions designed to protect themselves from adverse consequences of model misspecification. This behavior has consequences for what are ordinarily interpreted as market prices of risk, but big parts of which should actually be interpreted as market prices of model uncertainty. The chapters discuss ways of calibrating agents' fears of model misspecification in quantitative contexts.
Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics, 2019, the third volume of eight from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Model Validation and Uncertainty Quantification, including papers on: Inverse Problems and Uncertainty Quantification Controlling Uncertainty Validation of Models for Operating Environments Model Validation & Uncertainty Quantification: Decision Making Uncertainty Quantification in Structural Dynamics Uncertainty in Early Stage Design Computational and Uncertainty Quantification Tools
This book opens up new ways to develop mathematical models and optimization methods for interdependent energy infrastructures, ranging from the electricity network, natural gas network, district heating network, and electrified transportation network. The authors provide methods to help analyze, design, and operate the integrated energy system more efficiently and reliably, and constitute a foundational basis for decision support tools for the next-generation energy network. Chapters present new operation models of the coupled energy infrastructure and the application of new methodologies including convex optimization, robust optimization, and equilibrium constrained optimization. Four appendices provide students and researchers with helpful tutorials on advanced optimization methods: Basics of Linear and Conic Programs; Formulation Tricks in Integer Programming; Basics of Robust Optimization; Equilibrium Problems. This book provides theoretical foundation and technical applications for energy system integration, and the the interdisciplinary research presented will be useful to readers in many fields including electrical engineering, civil engineering, and industrial engineering.