Monocular Model-based 3D Tracking of Rigid Objects

Monocular Model-based 3D Tracking of Rigid Objects

Author: Vincent Lepetit

Publisher: Now Publishers Inc

Published: 2005

Total Pages: 108

ISBN-13: 9781933019031

DOWNLOAD EBOOK

Monocular Model-Based 3D Tracking of Rigid Objects reviews the different techniques and approaches that have been developed by industry and research.


3D Object Pose Estimation in Industrial Context

3D Object Pose Estimation in Industrial Context

Author: Giorgia Pitteri

Publisher:

Published: 2020

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

3D object detection and pose estimation are of primary importance for tasks such as robotic manipulation, augmented reality and they have been the focus of intense research in recent years. Methods relying on depth data acquired by depth cameras are robust. Unfortunately, active depth sensors are power hungry or sometimes it is not possible to use them. It is therefore often desirable to rely on color images. When training machine learning algorithms that aim at estimate object's 6D poses from images, many challenges arise, especially in industrial context that requires handling objects with symmetries and generalizing to unseen objects, i.e. objects never seen by the networks during training.In this thesis, we first analyse the link between the symmetries of a 3D object and its appearance in images. Our analysis explains why symmetrical objects can be a challenge when training machine learning algorithms to predict their 6D pose from images. We then propose an efficient and simple solution that relies on the normalization of the pose rotation. This approach is general and can be used with any 6D pose estimation algorithm.Then, we address the second main challenge: the generalization to unseen objects. Many recent methods for 6D pose estimation are robust and accurate but their success can be attributed to supervised Machine Learning approaches. For each new object, these methods have to be retrained on many different images of this object, which are not always available. Even if domain transfer methods allow for training such methods with synthetic images instead of real ones-at least to some extent-such training sessions take time, and it is highly desirable to avoid them in practice.We propose two methods to handle this problem. The first method relies only on the objects' geometries and focuses on objects with prominent corners, which covers a large number of industrial objects. We first learn to detect object corners of various shapes in images and also to predict their 3D poses, by using training images of a small set of objects. To detect a new object in a given image, we first identify its corners from its CAD model; we also detect the corners visible in the image and predict their 3D poses. We then introduce a RANSAC-like algorithm that robustly and efficiently detects and estimates the object's 3D pose by matching its corners on the CAD model with their detected counterparts in the image.The second method overcomes the limitations of the first one as it does not require objects to have specific corners and the offline selection of the corners on the CAD model. It combines Deep Learning and 3D geometry and relies on an embedding of the local 3D geometry to match the CAD models to the input images. For points at the surface of objects, this embedding can be computed directly from the CAD model; for image locations, we learn to predict it from the image itself. This establishes correspondences between 3D points on the CAD model and 2D locations of the input images. However, many of these correspondences are ambiguous as many points may have similar local geometries. We also show that we can use Mask-RCNN in a class-agnostic way to detect the new objects without retraining and thus drastically limit the number of possible correspondences. We can then robustly estimate a 3D pose from these discriminative correspondences using a RANSAC-like algorithm.


3D Computer Vision

3D Computer Vision

Author: Christian Wöhler

Publisher: Springer Science & Business Media

Published: 2012-07-23

Total Pages: 390

ISBN-13: 1447141504

DOWNLOAD EBOOK

This indispensable text introduces the foundations of three-dimensional computer vision and describes recent contributions to the field. Fully revised and updated, this much-anticipated new edition reviews a range of triangulation-based methods, including linear and bundle adjustment based approaches to scene reconstruction and camera calibration, stereo vision, point cloud segmentation, and pose estimation of rigid, articulated, and flexible objects. Also covered are intensity-based techniques that evaluate the pixel grey values in the image to infer three-dimensional scene structure, and point spread function based approaches that exploit the effect of the optical system. The text shows how methods which integrate these concepts are able to increase reconstruction accuracy and robustness, describing applications in industrial quality inspection and metrology, human-robot interaction, and remote sensing.


Robust Visual Detection and Tracking of Complex Objects

Robust Visual Detection and Tracking of Complex Objects

Author: Antoine Petit

Publisher:

Published: 2013

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

In this thesis, we address the issue of fully localizing a known object through computer vision, using a monocular camera, what is a central problem in robotics. A particular attention is here paid on space robotics applications, with the aims of providing a unified visual localization system for autonomous navigation purposes for space rendezvous and proximity operations. Two main challenges of the problem are tackled: initially detecting the targeted object and then tracking it frame-by-frame, providing the complete pose between the camera and the object, knowing the 3D CAD model of the object. For detection, the pose estimation process is based on the segmentation of the moving object and on an efficient probabilistic edge-based matching and alignment procedure of a set of synthetic views of the object with a sequence of initial images. For the tracking phase, pose estimation is handled through a 3D model-based tracking algorithm, for which we propose three different types of visual features, pertinently representing the object with its edges, its silhouette and with a set of interest points. The reliability of the localization process is evaluated by propagating the uncertainty from the errors of the visual features. This uncertainty besides feeds a linear Kalman filter on the camera velocity parameters. Qualitative and quantitative experiments have been performed on various synthetic and real data, with challenging imaging conditions, showing the efficiency and the benefits of the different contributions, and their compliance with space rendezvous applications.


Towards Robust Object Detection and Pose Estimation As a Service for Manufacturing Lndustries

Towards Robust Object Detection and Pose Estimation As a Service for Manufacturing Lndustries

Author: Martin Rudorfer

Publisher: Fraunhofer Verlag

Published: 2021-11-23

Total Pages: 0

ISBN-13: 9783839617120

DOWNLOAD EBOOK

The trend towards high-mix and low-volume production demands flexible and reconfigurable control for assembly systems. In less-structured environments, object detection and pose estimation is a key capability to enable industrial robotics applications such as grasping, handling and assembling. The integration and interconnectivity of such automation functions is fostered by Industry 4.0 through the adoption of service-based ecosystems. The main objective of this thesis is to create a service-based framework for object detection and pose estimation in manufacturing environments. This could be a viable alternative to traditional machine vision systems such as smart cameras and embedded PCs, which are challenged by the high diversity and fast-paced progress in the field of object detection and pose estimation. We approach this problem in three steps: First, by designing a service-based framework that allows to handle all methods uniformly. Second, by examining the integration of three exemplary object detection and pose estimation methods, and third, by characterizing the strengths and weaknesses of the proposed solution compared to traditional machine vision systems.


Representations and Techniques for 3D Object Recognition and Scene Interpretation

Representations and Techniques for 3D Object Recognition and Scene Interpretation

Author: Derek Hoiem

Publisher: Morgan & Claypool Publishers

Published: 2011-09-09

Total Pages: 171

ISBN-13: 160845729X

DOWNLOAD EBOOK

One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. The book is organized into three sections: (1) Interpretation of Physical Space; (2) Recognition of 3D Objects; and (3) Integrated 3D Scene Interpretation. The first discusses representations of spatial layout and techniques to interpret physical scenes from images. The second section introduces representations for 3D object categories that account for the intrinsically 3D nature of objects and provide robustness to change in viewpoints. The third section discusses strategies to unite inference of scene geometry and object pose and identity into a coherent scene interpretation. Each section broadly surveys important ideas from cognitive science and artificial intelligence research, organizes and discusses key concepts and techniques from recent work in computer vision, and describes a few sample approaches in detail. Newcomers to computer vision will benefit from introductions to basic concepts, such as single-view geometry and image classification, while experts and novices alike may find inspiration from the book's organization and discussion of the most recent ideas in 3D scene understanding and 3D object recognition. Specific topics include: mathematics of perspective geometry; visual elements of the physical scene, structural 3D scene representations; techniques and features for image and region categorization; historical perspective, computational models, and datasets and machine learning techniques for 3D object recognition; inferences of geometrical attributes of objects, such as size and pose; and probabilistic and feature-passing approaches for contextual reasoning about 3D objects and scenes. Table of Contents: Background on 3D Scene Models / Single-view Geometry / Modeling the Physical Scene / Categorizing Images and Regions / Examples of 3D Scene Interpretation / Background on 3D Recognition / Modeling 3D Objects / Recognizing and Understanding 3D Objects / Examples of 2D 1/2 Layout Models / Reasoning about Objects and Scenes / Cascades of Classifiers / Conclusion and Future Directions


Computer Vision Systems

Computer Vision Systems

Author: Mei Chen

Publisher: Springer

Published: 2013-07-11

Total Pages: 381

ISBN-13: 3642394027

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 9th International Conference on Computer Vision Systems, ICVS 2013, held in St. Petersburg, Russia, July 16-18, 2013. Proceedings. The 16 revised papers presented with 20 poster papers were carefully reviewed and selected from 94 submissions. The papers are organized in topical sections on image and video capture; visual attention and object detection; self-localization and pose estimation; motion and tracking; 3D reconstruction; features, learning and validation.