Robotic Systems and Autonomous Platforms

Robotic Systems and Autonomous Platforms

Author: Shawn M. Walsh

Publisher: Woodhead Publishing

Published: 2018-10-11

Total Pages: 606

ISBN-13: 0081020481

DOWNLOAD EBOOK

Robotic Systems and Autonomous Platforms: Advances in Materials and Manufacturing showcases new materials and manufacturing methodologies for the enhancement of robotic and autonomous systems. Initial chapters explore how autonomous systems can enable new uses for materials, including innovations on different length scales, from nano, to macro and large systems. The means by which autonomous systems can enable new uses for manufacturing are also addressed, highlighting innovations in 3D additive manufacturing, printing of materials, novel synthesis of multifunctional materials, and robotic cooperation. Concluding themes deliver highly novel applications from the international academic, industrial and government sectors. This book will provide readers with a complete review of the cutting-edge advances in materials and manufacturing methodologies that could enhance the capabilities of robotic and autonomous systems. - Presents comprehensive coverage of materials and manufacturing technologies, as well as sections on related technology, such as sensing, communications, autonomy/control and actuation - Explores potential applications demonstrated by a selection of case-studies - Contains contributions from leading experts in the field


Dynamics and Control of Robotic Systems

Dynamics and Control of Robotic Systems

Author: Andrew J. Kurdila

Publisher: John Wiley & Sons

Published: 2019-12-16

Total Pages: 514

ISBN-13: 1119524830

DOWNLOAD EBOOK

A comprehensive review of the principles and dynamics of robotic systems Dynamics and Control of Robotic Systems offers a systematic and thorough theoretical background for the study of the dynamics and control of robotic systems. The authors—noted experts in the field—highlight the underlying principles of dynamics and control that can be employed in a variety of contemporary applications. The book contains a detailed presentation of the precepts of robotics and provides methodologies that are relevant to realistic robotic systems. The robotic systems represented include wide range examples from classical industrial manipulators, humanoid robots to robotic surgical assistants, space vehicles, and computer controlled milling machines. The book puts the emphasis on the systematic application of the underlying principles and show how the computational and analytical tools such as MATLAB, Mathematica, and Maple enable students to focus on robotics’ principles and theory. Dynamics and Control of Robotic Systems contains an extensive collection of examples and problems and: Puts the focus on the fundamentals of kinematics and dynamics as applied to robotic systems Presents the techniques of analytical mechanics of robotics Includes a review of advanced topics such as the recursive order N formulation Contains a wide array of design and analysis problems for robotic systems Written for students of robotics, Dynamics and Control of Robotic Systems offers a comprehensive review of the underlying principles and methods of the science of robotics.


Implementation of Robot Systems

Implementation of Robot Systems

Author: Mike Wilson

Publisher: Butterworth-Heinemann

Published: 2014-11-17

Total Pages: 246

ISBN-13: 0124047491

DOWNLOAD EBOOK

Based on the author's wide-ranging experience as a robot user, supplier and consultant, Implementation of Robot Systems will enable you to approach the use of robots in your plant or facility armed with the right knowledge base and awareness of critical factors to take into account.This book starts with the basics of typical applications and robot capabilities before covering all stages of successful robot integration. Potential problems and pitfalls are flagged and worked through so that you can learn from others' mistakes and plan proactively with possible issues in mind.Taking in content from the author's graduate level teaching of automation and robotics for engineering in business and his consultancy as part of a UK Government program to help companies advance their technologies and practices in the area, Implementation of Robot Systems blends technical information with critical financial and business considerations to help you stay ahead of the competition. - Includes case studies of typical robot capabilities and use across a range of industries, with real-world installation examples and problems encountered - Provides step-by-step coverage of the various stages required to achieve successful implementation, including system design, financial justification, working with suppliers and project management - Offers no-nonsense advice on the pitfalls and issues to anticipate, along with guidance on how to avoid or resolve them for cost and time-effective solutions


Introduction to Robotics

Introduction to Robotics

Author: Saeed B. Niku

Publisher: John Wiley & Sons

Published: 2010-09-22

Total Pages: 961

ISBN-13: 0470604468

DOWNLOAD EBOOK

Niku offers comprehensive, yet concise coverage of robotics that will appeal to engineers. Robotic applications are drawn from a wide variety of fields. Emphasis is placed on design along with analysis and modeling. Kinematics and dynamics are covered extensively in an accessible style. Vision systems are discussed in detail, which is a cutting-edge area in robotics. Engineers will also find a running design project that reinforces the concepts by having them apply what they’ve learned.


Intelligent Robotic Systems: Theory, Design and Applications

Intelligent Robotic Systems: Theory, Design and Applications

Author: Kimon P. Valavanis

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 265

ISBN-13: 1461535689

DOWNLOAD EBOOK

Since the late 1960s, there has been a revolution in robots and industrial automation, from the design of robots with no computing or sensorycapabilities (first-generation), to the design of robots with limited computational power and feedback capabilities (second-generation), and the design of intelligent robots (third-generation), which possess diverse sensing and decision making capabilities. The development of the theory of intelligent machines has been developed in parallel to the advances in robot design. This theory is the natural outcome of research and development in classical control (1950s), adaptive and learning control (1960s), self-organizing control (1970s) and intelligent control systems (1980s). The theory of intelligent machines involves utilization and integration of concepts and ideas from the diverse disciplines of science, engineering and mathematics, and fields like artificial intelligence, system theory and operations research. The main focus and motivation is to bridge the gap between diverse disciplines involved and bring under a common cover several generic methodologies pertaining to what has been defined as machine intelligence. Intelligent robotic systems are a specific application of intelligent machines. They are complex computer controlled robotic systems equipped with a diverse set of visual and non visual sensors and possess decision making and problem solving capabilities within their domain of operation. Their modeling and control is accomplished via analytical and heuristic methodologies and techniques pertaining to generalized system theory and artificial intelligence. Intelligent Robotic Systems: Theory, Design and Applications, presents and justifies the fundamental concepts and ideas associated with the modeling and analysis of intelligent robotic systems. Appropriate for researchers and engineers in the general area of robotics and automation, Intelligent Robotic Systems is both a solid reference as well as a text for a graduate level course in intelligent robotics/machines.


On-Line Trajectory Generation in Robotic Systems

On-Line Trajectory Generation in Robotic Systems

Author: Torsten Kröger

Publisher: Springer

Published: 2010-01-10

Total Pages: 236

ISBN-13: 3642051758

DOWNLOAD EBOOK

By the dawn of the new millennium, robotics has undergone a major tra- formation in scope and dimensions. This expansion has been brought about bythematurityofthe?eldandtheadvancesinitsrelatedtechnologies.From a largely dominant industrial focus, robotics has been rapidly expanding into the challenges of the human world. The new generation of robots is expected to safely and dependably co-habitat with humans in homes, workplaces, and communities,providingsupportinservices,entertainment,education,heal- care, manufacturing, and assistance. Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across - verse research areas and scienti?c disciplines, such as: biomechanics, haptics, neurosciences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are pr- ing an abundant source of stimulation and insights for the ?eld of robotics. It is indeed at the intersection of disciplines that the most striking advances happen. The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to bring, in a timely fashion, the latest advances and developments in robotics on the basis of their signi?cance and quality. It is our hope that the wider dissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing ?eld.


Intelligent Control of Robotic Systems

Intelligent Control of Robotic Systems

Author: D. Katic

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 308

ISBN-13: 9401703175

DOWNLOAD EBOOK

As robotic systems make their way into standard practice, they have opened the door to a wide spectrum of complex applications. Such applications usually demand that the robots be highly intelligent. Future robots are likely to have greater sensory capabilities, more intelligence, higher levels of manual dexter ity, and adequate mobility, compared to humans. In order to ensure high-quality control and performance in robotics, new intelligent control techniques must be developed, which are capable of coping with task complexity, multi-objective decision making, large volumes of perception data and substantial amounts of heuristic information. Hence, the pursuit of intelligent autonomous robotic systems has been a topic of much fascinating research in recent years. On the other hand, as emerging technologies, Soft Computing paradigms consisting of complementary elements of Fuzzy Logic, Neural Computing and Evolutionary Computation are viewed as the most promising methods towards intelligent robotic systems. Due to their strong learning and cognitive ability and good tolerance of uncertainty and imprecision, Soft Computing techniques have found wide application in the area of intelligent control of robotic systems.


Surgical Robotics

Surgical Robotics

Author: Jacob Rosen

Publisher: Springer Science & Business Media

Published: 2011-01-15

Total Pages: 827

ISBN-13: 144191126X

DOWNLOAD EBOOK

Surgical robotics is a rapidly evolving field. With roots in academic research, surgical robotic systems are now clinically used across a wide spectrum of surgical procedures. Surgical Robotics: Systems Applications and Visions provides a comprehensive view of the field both from the research and clinical perspectives. This volume takes a look at surgical robotics from four different perspectives, addressing vision, systems, engineering development and clinical applications of these technologies. The book also: -Discusses specific surgical applications of robotics that have already been deployed in operating rooms -Covers specific engineering breakthroughs that have occurred in surgical robotics -Details surgical robotic applications in specific disciplines of surgery including orthopedics, urology, cardiac surgery, neurosurgery, ophthalmology, pediatric surgery and general surgery Surgical Robotics: Systems Applications and Visions is an ideal volume for researchers and engineers working in biomedical engineering.


Cellular Robotics and Micro Robotic Systems

Cellular Robotics and Micro Robotic Systems

Author: Toshio Fukuda

Publisher: World Scientific

Published: 1994

Total Pages: 296

ISBN-13: 9789810214579

DOWNLOAD EBOOK

This book introduces interesting topics, from concepts to the latest research, on cellular and micro robotic systems. The cellular robotic system is a self-organizing robotic system composed of a large number of autonomous robotic units, named cells. This idea came from the organic structure of a living body. Several attractive topics in this area are covered, such as swarm intelligence, communications, and robotic mechanisms. The micro robotic system is currently the most fascinating technology. Micro mechanisms, control and intelligence, with respect to this system are treated here. The combination of both technologies will prepare the way for a new paradigm in the field of engineering.


Industrial and Robotic Systems

Industrial and Robotic Systems

Author: Eusebio E. Hernandez

Publisher: Springer Nature

Published: 2020-05-13

Total Pages: 341

ISBN-13: 3030454029

DOWNLOAD EBOOK

This volume gathers the latest advances, innovations, and applications in the field of robotics engineering, as presented by leading international researchers and engineers at the Latin American Symposium on Industrial and Robotic Systems (LASIRS), held in Tampico, Mexico on October-November 30-01 2019. The contributions cover all major areas of R&D and innovation in simulation, optimization, and control of robotics, such as design and optimization of robots using numerical and metaheuristic methods, autonomous and control systems, industrial compliance solutions, numerical simulations for manipulators and robots, metaheuristics applied to robotics problems, Industry 4.0, control and automation in petrochemical processes, simulation and control in aerospace and aeronautics, and education in robotics. The conference represented a unique platform to share the latest research and developments in simulation, control and optimization of robotic systems, and to promote cooperation among specialists in machine and mechanism area.