This is a comprehensive volume on robot teams that will be the standard reference on multi-robot systems. The volume provides not only the essentials of multi-agent robotics theory but also descriptions of exemplary implemented systems demonstrating the key concepts of multi-robot research. Information is presented in a descriptive manner and augme
Personal robots are about as advanced today as personal computers were on the eve of the first IBM PC in the early 1980s. They are still the domain of hobbyists who cobble them together from scratch or from kits, join local clubs to swap code and stage contests, and whose labor of love is setting the stage for a technological revolution. This book will deconstruct the 30 regional winning robot designs from the FIRST Robotics Competition in 2006. The FIRST Robotics Competition (held annually and co-founded by Dean Kamen and Woodie Flowers) is a multinational competition that teams professionals and young people to solve an engineering design problem in an intense and competitive way. In 2005 the competition reached close to 25,000 people on close to 1,000 teams in 30 competitions. Teams came from Brazil, Canada, Ecuador, Israel, Mexico, the U.K., and almost every U.S. state. The competitions are high-tech spectator sporting events that have gained a loyal following because of the high caliber work featured. Each team is paired with a mentor from such companies as Apple, Motorola, or NASA (NASA has sponsored 200 teams in 8 years). This book looks at 30 different robot designs all based on the same chassis, and provides in-depth information on the inspiration and the technology that went into building each of them. Each robot is featured in 6-8 pages providing readers with a solid understanding of how the robot was conceived and built. There are sketches, interim drawings, and process shots for each robot.
Distributed Coordination Theory for Robot Teams develops control algorithms to coordinate the motion of autonomous teams of robots in order to achieve some desired collective goal. It provides novel solutions to foundational coordination problems, including distributed algorithms to make quadrotor helicopters rendezvous and to make ground vehicles move in formation along circles or straight lines. The majority of the algorithms presented in this book can be implemented using on-board cameras. The book begins with an introduction to coordination problems, such as rendezvous of flying robots, and modelling. It then provides a solid theoretical background in basic stability, graph theory and control primitives. The book discusses the algorithmic solutions for numerous distributed control problems, focusing primarily on flying robotics and kinematic unicycles. Finally, the book looks to the future, and suggests areas discussed which could be pursued in further research. This book will provide practitioners, researchers and students in the field of control and robotics new insights in distributed multi-agent systems.
Papers from a flagship conference reflect the latest developments in the field, including work in such rapidly advancing areas as human-robot interaction and formal methods. Robotics: Science and Systems VIII spans a wide spectrum of robotics, bringing together contributions from researchers working on the mathematical foundations of robotics, robotics applications, and analysis of robotics systems. This volume presents the proceedings of the eighth annual Robotics: Science and Systems (RSS) conference, held in July 2012 at the University of Sydney. The contributions reflect the exciting diversity of the field, presenting the best, the newest, and the most challenging work on such topics as mechanisms, kinematics, dynamics and control, human-robot interaction and human-centered systems, distributed systems, mobile systems and mobility, manipulation, field robotics, medical robotics, biological robotics, robot perception, and estimation and learning in robotic systems. The conference and its proceedings reflect not only the tremendous growth of robotics as a discipline but also the desire in the robotics community for a flagship event at which the best of the research in the field can be presented.
This volume considers the current research of group communication scholars, provides an overview of major foci in the discipline, and points toward possible trajectories for future scholarship. It establishes group communication’s central role within research on human behaviour and fosters an identity for group communication researchers.
With the science of robotics undergoing a major transformation just now, Springer’s new, authoritative handbook on the subject couldn’t have come at a better time. Having broken free from its origins in industry, robotics has been rapidly expanding into the challenging terrain of unstructured environments. Unlike other handbooks that focus on industrial applications, the Springer Handbook of Robotics incorporates these new developments. Just like all Springer Handbooks, it is utterly comprehensive, edited by internationally renowned experts, and replete with contributions from leading researchers from around the world. The handbook is an ideal resource for robotics experts but also for people new to this expanding field.
This book is a collection of 29 excellent works and comprised of three sections: task oriented approach, bio inspired approach, and modeling/design. In the first section, applications on formation, localization/mapping, and planning are introduced. The second section is on behavior-based approach by means of artificial intelligence techniques. The last section includes research articles on development of architectures and control systems.
This book includes the post-conference proceedings of the 21st RoboCup International Symposium, held in Nagoya, Japan, in September 2017. The 33 full revised papers and 9 papers from the winning teams presented were carefully reviewed and selected from 58 submissions. The papers are orginazed on topical sections on Robotics, Artificial intelligence, Environment perception, State estimation and much more.
Many different cognitive research approaches have been generated to explore fields of practice where mutual teamwork is present and emergent. Results have shown subtle yet significant findings on how humans actually work together and when they transition from their own individual roles and niches into elements of teamwork and team-to-team work. Fields of Practice and Applied Solutions within Distributed Team Cognition explores the advantages of teams and shows how researchers can obtain a deep understanding of users/teams that are entrenched in a particular field. Interdisciplinary perspectives and transformative intersections are provided. Features Delineates contextual nuances of socio-technical environments as influencers of team cognition Provides quantitative/qualitative perspectives of distributed team cognition by demonstrating in situ interactions Reviews applied teamwork for fields of practice in medicine, cybersecurity, education, aviation, and manufacturing Generates practical examples of distributed work and how cognition develops across teams using technologies Specifies applied solutions through technologies such as robots, agents, games, and social networks