Robot sensors and transducers

Robot sensors and transducers

Author: S Ruocco

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 176

ISBN-13: 9401168725

DOWNLOAD EBOOK

The use of sensor's with machines, whether to control them continuously or to inspect and verify their operation, can be highly cost-effective in particular areas of industrial automation. Examples of such areas include sensing systems to monitor tool condition, force and torque sensing for robot assembly systems, vision-based automatic inspection, and tracking sensor's for robot arc welding and seam sealing. Many think these will be the basis of an important future industry. So far, design of sensor systems to meet these needs has been (in the interest of cheapness) rather ad hoc and carefully tailored to the application both as to the transducer hardware and the associated processing software. There are now, however, encouraging signs of commonality emerging between different sensor application areas. For instance, many commercial vision systems and some tactile systems just emerging from research are able to use more or less standardized techniques for two-dimensional image processing and shape representation. Structured-light triangulation systems can be applied with relatively minor hardware and software variations to measure three-dimensional profiles of objects as diverse as individual soldered joints, body pressings, and weldments. Sensors make it possible for machines to recover 'sensibly' from errors, and standard software proce dures such as expert systems can now be applied to facilitate this.


Basics of Robotics

Basics of Robotics

Author: Adam Morecki

Publisher: Springer

Published: 2014-05-04

Total Pages: 589

ISBN-13: 3709125324

DOWNLOAD EBOOK

This volume contains the basic concepts of modern robotics, basic definitions, systematics of robots in industry, service, medicine and underwater activity. Important information on walking and mili-walking machines are included as well as possible applications of microrobots in medicine, agriculture, underwater activity.


Theory and Practice of Robots and Manipulators

Theory and Practice of Robots and Manipulators

Author: A. Morecki

Publisher: Springer

Published: 2014-05-04

Total Pages: 415

ISBN-13: 3709126983

DOWNLOAD EBOOK

The CISM-IFToMM Symposia have played a dynamic role in the development of the theory and practice of robotics. The proceedings of the Tenth Symposia present a world view to date of the state-of-the-art, including a unique record of the results achieved in central and eastern Europe.


Sensors for Mobile Robots

Sensors for Mobile Robots

Author: H.R. Everett

Publisher: CRC Press

Published: 1995-07-15

Total Pages: 543

ISBN-13: 1439863482

DOWNLOAD EBOOK

The author compiles everything a student or experienced developmental engineer needs to know about the supporting technologies associated with the rapidly evolving field of robotics.From the table of contents: Design Considerations * Dead Reckoning * Odometry Sensors * Doppler and Inertial Navigation * Typical Mobility Configurations * Tactile and


Robot sensors and transducers

Robot sensors and transducers

Author: S.R. Ruocco

Publisher: Springer

Published: 2012-03-14

Total Pages: 184

ISBN-13: 9789401168717

DOWNLOAD EBOOK

The use of sensor's with machines, whether to control them continuously or to inspect and verify their operation, can be highly cost-effective in particular areas of industrial automation. Examples of such areas include sensing systems to monitor tool condition, force and torque sensing for robot assembly systems, vision-based automatic inspection, and tracking sensor's for robot arc welding and seam sealing. Many think these will be the basis of an important future industry. So far, design of sensor systems to meet these needs has been (in the interest of cheapness) rather ad hoc and carefully tailored to the application both as to the transducer hardware and the associated processing software. There are now, however, encouraging signs of commonality emerging between different sensor application areas. For instance, many commercial vision systems and some tactile systems just emerging from research are able to use more or less standardized techniques for two-dimensional image processing and shape representation. Structured-light triangulation systems can be applied with relatively minor hardware and software variations to measure three-dimensional profiles of objects as diverse as individual soldered joints, body pressings, and weldments. Sensors make it possible for machines to recover 'sensibly' from errors, and standard software proce dures such as expert systems can now be applied to facilitate this.


Robotic Tactile Sensing

Robotic Tactile Sensing

Author: Ravinder S. Dahiya

Publisher: Springer Science & Business Media

Published: 2012-07-29

Total Pages: 258

ISBN-13: 9400705794

DOWNLOAD EBOOK

Future robots are expected to work closely and interact safely with real-world objects and humans alike. Sense of touch is important in this context, as it helps estimate properties such as shape, texture, hardness, material type and many more; provides action related information, such as slip detection; and helps carrying out actions such as rolling an object between fingers without dropping it. This book presents an in-depth description of the solutions available for gathering tactile data, obtaining aforementioned tactile information from the data and effectively using the same in various robotic tasks. The efforts during last four decades or so have yielded a wide spectrum of tactile sensing technologies and engineered solutions for both intrinsic and extrinsic touch sensors. Nowadays, new materials and structures are being explored for obtaining robotic skin with physical features like bendable, conformable, and stretchable. Such features are important for covering various body parts of robots or 3D surfaces. Nonetheless, there exist many more hardware, software and application related issues that must be considered to make tactile sensing an effective component of future robotic platforms. This book presents an in-depth analysis of various system related issues and presents the trade-offs one may face while developing an effective tactile sensing system. For this purpose, human touch sensing has also been explored. The design hints coming out of the investigations into human sense of touch can be useful in improving the effectiveness of tactile sensory modality in robotics and other machines. Better integration of tactile sensors on a robot’s body is prerequisite for the effective utilization of tactile data. The concept of semiconductor devices based sensors is an interesting one, as it allows compact and fast tactile sensing systems with capabilities such as human-like spatio-temporal resolution. This book presents a comprehensive description of semiconductor devices based tactile sensing. In particular, novel Piezo Oxide Semiconductor Field Effect Transistor (POSFET) based approach for high resolution tactile sensing has been discussed in detail. Finally, the extension of semiconductors devices based sensors concept to large and flexile areas has been discussed for obtaining robotic or electronic skin. With its multidisciplinary scope, this book is suitable for graduate students and researchers coming from diverse areas such robotics (bio-robots, humanoids, rehabilitation etc.), applied materials, humans touch sensing, electronics, microsystems, and instrumentation. To better explain the concepts the text is supported by large number of figures.


Sensor Devices and Systems for Robotics

Sensor Devices and Systems for Robotics

Author: Alicia Casals

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 356

ISBN-13: 3642745679

DOWNLOAD EBOOK

As robots improve in efficiency and intelligence, there is a growing need to develop more efficient, accurate and powerful sensors in accordance with the tasks to be robotized. This has led to a great increase in the study and development of different kinds of sensor devices and perception systems over the last ten years. Applications that differ from the industrial ones are often more demanding in sensorics since the environment is not usually so well structured. Spatial and agricultural applications are examples of situations where the environment is unknown or variable. Therefore, the work to be done by a robot cannot be strictly programmed and there must be an interactive communication with the environment. It cannot be denied that evolution and development in robotics are closely related to the advances made in sensorics. The first vision and force sensors utilizing discrete components resulted in a very low resolution and poor accuracy. However, progress in VLSI, imaging devices and other technologies have led to the development of more efficient sensor and perception systems which are able to supply the necessary data to robots.


Introduction to Autonomous Mobile Robots, second edition

Introduction to Autonomous Mobile Robots, second edition

Author: Roland Siegwart

Publisher: MIT Press

Published: 2011-02-18

Total Pages: 473

ISBN-13: 0262015358

DOWNLOAD EBOOK

The second edition of a comprehensive introduction to all aspects of mobile robotics, from algorithms to mechanisms. Mobile robots range from the Mars Pathfinder mission's teleoperated Sojourner to the cleaning robots in the Paris Metro. This text offers students and other interested readers an introduction to the fundamentals of mobile robotics, spanning the mechanical, motor, sensory, perceptual, and cognitive layers the field comprises. The text focuses on mobility itself, offering an overview of the mechanisms that allow a mobile robot to move through a real world environment to perform its tasks, including locomotion, sensing, localization, and motion planning. It synthesizes material from such fields as kinematics, control theory, signal analysis, computer vision, information theory, artificial intelligence, and probability theory. The book presents the techniques and technology that enable mobility in a series of interacting modules. Each chapter treats a different aspect of mobility, as the book moves from low-level to high-level details. It covers all aspects of mobile robotics, including software and hardware design considerations, related technologies, and algorithmic techniques. This second edition has been revised and updated throughout, with 130 pages of new material on such topics as locomotion, perception, localization, and planning and navigation. Problem sets have been added at the end of each chapter. Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners. Curriculum developed by Dr. Robert King, Colorado School of Mines, and Dr. James Conrad, University of North Carolina-Charlotte, to accompany the National Instruments LabVIEW Robotics Starter Kit, are available. Included are 13 (6 by Dr. King and 7 by Dr. Conrad) laboratory exercises for using the LabVIEW Robotics Starter Kit to teach mobile robotics concepts.


Traditional and Non-Traditional Robotic Sensors

Traditional and Non-Traditional Robotic Sensors

Author: Thomas C. Henderson

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 463

ISBN-13: 364275984X

DOWNLOAD EBOOK

This book contains the written record of the NATO Advanced Research Workshop on Traditional and Non-Traditional Robotic Sensors held in the Hotel Villa del Mare, Maratea, Italy, August 28 - September 1, 1989. This workshop was organized under the auspicies of the NATO Special Program on Sensory Systems for Robotic Control. Professor Frans Groen from the University of Amsterdam and Dr. Gert Hirzinger from the German Aerospace Research Establishment (DLR) served as members of the organizing committee for this workshop. Research in the area of robotic sensors is necessary in order to support a wide range of applications, including: industrial automation, space robotics, image analysis, microelectronics, and intelligent sensors. This workshop focused on the role of traditional and non-traditional sensors in robotics. In particular, the following three topics were explored: - Sensor development and technology, - Multisensor integration techniques, - Application area requirements which motivate sensor development directions. This workshop'brought together experts from NATO countries to discuss recent developments in these three areas. Many new directions (or new directions on old problems) were proposed. Existing sensors should be pushed into new application domains such as medical robotics and space robotics.