Rings and Ideals

Rings and Ideals

Author: Neal H. McCoy

Publisher: American Mathematical Soc.

Published: 1948-12-31

Total Pages: 229

ISBN-13: 1614440085

DOWNLOAD EBOOK

This monograph presents an introduction to that branch of abstract algebra having to do with the theory of rings, with some emphasis on the role of ideals in the theory. Except for a knowledge of certain fundamental theorems about determinants which is assumed in Chapter VIII, and at one point in Chapter VII, the book is almost entirely self-contained. Of course, the reader must have a certain amount of “mathematical maturity” in order to understand the illustrative examples and also to grasp the significance of the abstract approach. However, as far as formal technique is concerned, little more than the elements of algebra are presupposed.


Integral Closure of Ideals, Rings, and Modules

Integral Closure of Ideals, Rings, and Modules

Author: Craig Huneke

Publisher: Cambridge University Press

Published: 2006-10-12

Total Pages: 446

ISBN-13: 0521688604

DOWNLOAD EBOOK

Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.


The Theory of Rings

The Theory of Rings

Author: Nathan Jacobson

Publisher: American Mathematical Soc.

Published: 1943-12-31

Total Pages: 160

ISBN-13: 0821815024

DOWNLOAD EBOOK

The book is mainly concerned with the theory of rings in which both maximal and minimal conditions hold for ideals (except in the last chapter, where rings of the type of a maximal order in an algebra are considered). The central idea consists of representing rings as rings of endomorphisms of an additive group, which can be achieved by means of the regular representation.


Near Rings, Fuzzy Ideals, and Graph Theory

Near Rings, Fuzzy Ideals, and Graph Theory

Author: Bhavanari Satyanarayana

Publisher: CRC Press

Published: 2013-05-21

Total Pages: 482

ISBN-13: 1439873100

DOWNLOAD EBOOK

Near Rings, Fuzzy Ideals, and Graph Theory explores the relationship between near rings and fuzzy sets and between near rings and graph theory. It covers topics from recent literature along with several characterizations. After introducing all of the necessary fundamentals of algebraic systems, the book presents the essentials of near rings theory, relevant examples, notations, and simple theorems. It then describes the prime ideal concept in near rings, takes a rigorous approach to the dimension theory of N-groups, gives some detailed proofs of matrix near rings, and discusses the gamma near ring, which is a generalization of both gamma rings and near rings. The authors also provide an introduction to fuzzy algebraic systems, particularly the fuzzy ideals of near rings and gamma near rings. The final chapter explains important concepts in graph theory, including directed hypercubes, dimension, prime graphs, and graphs with respect to ideals in near rings. Near ring theory has many applications in areas as diverse as digital computing, sequential mechanics, automata theory, graph theory, and combinatorics. Suitable for researchers and graduate students, this book provides readers with an understanding of near ring theory and its connection to fuzzy ideals and graph theory.


Exercises in Basic Ring Theory

Exercises in Basic Ring Theory

Author: Grigore Calugareanu

Publisher: Springer Science & Business Media

Published: 1998-02-28

Total Pages: 226

ISBN-13: 9780792349181

DOWNLOAD EBOOK

Each undergraduate course of algebra begins with basic notions and results concerning groups, rings, modules and linear algebra. That is, it begins with simple notions and simple results. Our intention was to provide a collection of exercises which cover only the easy part of ring theory, what we have named the "Basics of Ring Theory". This seems to be the part each student or beginner in ring theory (or even algebra) should know - but surely trying to solve as many of these exercises as possible independently. As difficult (or impossible) as this may seem, we have made every effort to avoid modules, lattices and field extensions in this collection and to remain in the ring area as much as possible. A brief look at the bibliography obviously shows that we don't claim much originality (one could name this the folklore of ring theory) for the statements of the exercises we have chosen (but this was a difficult task: indeed, the 28 titles contain approximatively 15.000 problems and our collection contains only 346). The real value of our book is the part which contains all the solutions of these exercises. We have tried to draw up these solutions as detailed as possible, so that each beginner can progress without skilled help. The book is divided in two parts each consisting of seventeen chapters, the first part containing the exercises and the second part the solutions.


Determinantal Rings

Determinantal Rings

Author: Winfried Bruns

Publisher: Springer

Published: 2006-11-14

Total Pages: 246

ISBN-13: 3540392742

DOWNLOAD EBOOK

Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law. This approach suggest (and is simplified by) the simultaneous treatment of the Schubert subvarieties of Grassmannian. Other methods have not been neglected, however. Principal radical systems are discussed in detail, and one section is devoted to each of invariant and representation theory. While the book is primarily a research monograph, it serves also as a reference source and the reader requires only the basics of commutative algebra together with some supplementary material found in the appendix. The text may be useful for seminars following a course in commutative ring theory since a vast number of notions, results, and techniques can be illustrated significantly by applying them to determinantal rings.


Foundations of Module and Ring Theory

Foundations of Module and Ring Theory

Author: Robert Wisbauer

Publisher: Routledge

Published: 2018-05-11

Total Pages: 622

ISBN-13: 1351447343

DOWNLOAD EBOOK

This volume provides a comprehensive introduction to module theory and the related part of ring theory, including original results as well as the most recent work. It is a useful and stimulating study for those new to the subject as well as for researchers and serves as a reference volume. Starting form a basic understanding of linear algebra, the theory is presented and accompanied by complete proofs. For a module M, the smallest Grothendieck category containing it is denoted by o[M] and module theory is developed in this category. Developing the techniques in o[M] is no more complicated than in full module categories and the higher generality yields significant advantages: for example, module theory may be developed for rings without units and also for non-associative rings. Numerous exercises are included in this volume to give further insight into the topics covered and to draw attention to related results in the literature.


Algebra: Chapter 0

Algebra: Chapter 0

Author: Paolo Aluffi

Publisher: American Mathematical Soc.

Published: 2021-11-09

Total Pages: 713

ISBN-13: 147046571X

DOWNLOAD EBOOK

Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.