Riemannian Manifolds

Riemannian Manifolds

Author: John M. Lee

Publisher: Springer Science & Business Media

Published: 2006-04-06

Total Pages: 232

ISBN-13: 0387227261

DOWNLOAD EBOOK

This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.


Introduction to Riemannian Manifolds

Introduction to Riemannian Manifolds

Author: John M. Lee

Publisher: Springer

Published: 2019-01-02

Total Pages: 437

ISBN-13: 3319917552

DOWNLOAD EBOOK

This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.


Foliations on Riemannian Manifolds

Foliations on Riemannian Manifolds

Author: Philippe Tondeur

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 258

ISBN-13: 1461387809

DOWNLOAD EBOOK

A first approximation to the idea of a foliation is a dynamical system, and the resulting decomposition of a domain by its trajectories. This is an idea that dates back to the beginning of the theory of differential equations, i.e. the seventeenth century. Towards the end of the nineteenth century, Poincare developed methods for the study of global, qualitative properties of solutions of dynamical systems in situations where explicit solution methods had failed: He discovered that the study of the geometry of the space of trajectories of a dynamical system reveals complex phenomena. He emphasized the qualitative nature of these phenomena, thereby giving strong impetus to topological methods. A second approximation is the idea of a foliation as a decomposition of a manifold into submanifolds, all being of the same dimension. Here the presence of singular submanifolds, corresponding to the singularities in the case of a dynamical system, is excluded. This is the case we treat in this text, but it is by no means a comprehensive analysis. On the contrary, many situations in mathematical physics most definitely require singular foliations for a proper modeling. The global study of foliations in the spirit of Poincare was begun only in the 1940's, by Ehresmann and Reeb.


Differential and Riemannian Manifolds

Differential and Riemannian Manifolds

Author: Serge Lang

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 376

ISBN-13: 1461241820

DOWNLOAD EBOOK

This is the third version of a book on differential manifolds. The first version appeared in 1962, and was written at the very beginning of a period of great expansion of the subject. At the time, I found no satisfactory book for the foundations of the subject, for multiple reasons. I expanded the book in 1971, and I expand it still further today. Specifically, I have added three chapters on Riemannian and pseudo Riemannian geometry, that is, covariant derivatives, curvature, and some applications up to the Hopf-Rinow and Hadamard-Cartan theorems, as well as some calculus of variations and applications to volume forms. I have rewritten the sections on sprays, and I have given more examples of the use of Stokes' theorem. I have also given many more references to the literature, all of this to broaden the perspective of the book, which I hope can be used among things for a general course leading into many directions. The present book still meets the old needs, but fulfills new ones. At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.).


Symmetries of Spacetimes and Riemannian Manifolds

Symmetries of Spacetimes and Riemannian Manifolds

Author: Krishan L. Duggal

Publisher: Springer Science & Business Media

Published: 2013-11-22

Total Pages: 227

ISBN-13: 1461553156

DOWNLOAD EBOOK

This book provides an upto date information on metric, connection and curva ture symmetries used in geometry and physics. More specifically, we present the characterizations and classifications of Riemannian and Lorentzian manifolds (in particular, the spacetimes of general relativity) admitting metric (i.e., Killing, ho mothetic and conformal), connection (i.e., affine conformal and projective) and curvature symmetries. Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of a comprehensive collection of the works of a very large number of researchers on all the above mentioned symmetries. (b) We have aimed at bringing together the researchers interested in differential geometry and the mathematical physics of general relativity by giving an invariant as well as the index form of the main formulas and results. (c) Attempt has been made to support several main mathematical results by citing physical example(s) as applied to general relativity. (d) Overall the presentation is self contained, fairly accessible and in some special cases supported by an extensive list of cited references. (e) The material covered should stimulate future research on symmetries. Chapters 1 and 2 contain most of the prerequisites for reading the rest of the book. We present the language of semi-Euclidean spaces, manifolds, their tensor calculus; geometry of null curves, non-degenerate and degenerate (light like) hypersurfaces. All this is described in invariant as well as the index form.


Foliations on Riemannian Manifolds and Submanifolds

Foliations on Riemannian Manifolds and Submanifolds

Author: Vladimir Rovenski

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 296

ISBN-13: 1461242703

DOWNLOAD EBOOK

This monograph is based on the author's results on the Riemannian ge ometry of foliations with nonnegative mixed curvature and on the geometry of sub manifolds with generators (rulings) in a Riemannian space of nonnegative curvature. The main idea is that such foliated (sub) manifolds can be decom posed when the dimension of the leaves (generators) is large. The methods of investigation are mostly synthetic. The work is divided into two parts, consisting of seven chapters and three appendices. Appendix A was written jointly with V. Toponogov. Part 1 is devoted to the Riemannian geometry of foliations. In the first few sections of Chapter I we give a survey of the basic results on foliated smooth manifolds (Sections 1.1-1.3), and finish in Section 1.4 with a discussion of the key problem of this work: the role of Riemannian curvature in the study of foliations on manifolds and submanifolds.


The Laplacian on a Riemannian Manifold

The Laplacian on a Riemannian Manifold

Author: Steven Rosenberg

Publisher: Cambridge University Press

Published: 1997-01-09

Total Pages: 190

ISBN-13: 9780521468312

DOWNLOAD EBOOK

This text on analysis of Riemannian manifolds is aimed at students who have had a first course in differentiable manifolds.


Eigenfunctions of the Laplacian on a Riemannian Manifold

Eigenfunctions of the Laplacian on a Riemannian Manifold

Author: Steve Zelditch

Publisher: American Mathematical Soc.

Published: 2017-12-12

Total Pages: 410

ISBN-13: 1470410370

DOWNLOAD EBOOK

Eigenfunctions of the Laplacian of a Riemannian manifold can be described in terms of vibrating membranes as well as quantum energy eigenstates. This book is an introduction to both the local and global analysis of eigenfunctions. The local analysis of eigenfunctions pertains to the behavior of the eigenfunctions on wavelength scale balls. After re-scaling to a unit ball, the eigenfunctions resemble almost-harmonic functions. Global analysis refers to the use of wave equation methods to relate properties of eigenfunctions to properties of the geodesic flow. The emphasis is on the global methods and the use of Fourier integral operator methods to analyze norms and nodal sets of eigenfunctions. A somewhat unusual topic is the analytic continuation of eigenfunctions to Grauert tubes in the real analytic case, and the study of nodal sets in the complex domain. The book, which grew out of lectures given by the author at a CBMS conference in 2011, provides complete proofs of some model results, but more often it gives informal and intuitive explanations of proofs of fairly recent results. It conveys inter-related themes and results and offers an up-to-date comprehensive treatment of this important active area of research.


Sobolev Spaces on Riemannian Manifolds

Sobolev Spaces on Riemannian Manifolds

Author: Emmanuel Hebey

Publisher: Springer

Published: 2006-11-14

Total Pages: 126

ISBN-13: 3540699937

DOWNLOAD EBOOK

Several books deal with Sobolev spaces on open subsets of R (n), but none yet with Sobolev spaces on Riemannian manifolds, despite the fact that the theory of Sobolev spaces on Riemannian manifolds already goes back about 20 years. The book of Emmanuel Hebey will fill this gap, and become a necessary reading for all using Sobolev spaces on Riemannian manifolds. Hebey's presentation is very detailed, and includes the most recent developments due mainly to the author himself and to Hebey-Vaugon. He makes numerous things more precise, and discusses the hypotheses to test whether they can be weakened, and also presents new results.