Rhodium-Catalyzed Asymmetric Ring Opening of Oxabicyclic Alkenes and Palladium-Catalyzed Carbon-Halogen Bond Forming Reactions

Rhodium-Catalyzed Asymmetric Ring Opening of Oxabicyclic Alkenes and Palladium-Catalyzed Carbon-Halogen Bond Forming Reactions

Author: Christine Le

Publisher:

Published: 2017

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Atom-economical addition reactions to unsaturated carbonâ carbon bonds represent a powerful class of transformations in organic chemistry, since a great deal of molecular complexity can be generated from simple starting materials. Highly regio- and stereoselective processes have been made possible through the use of transition metal catalysts, alongside specialized ancillary ligands and in combination with rational substrate design. One area of research in the Lautens group involves the transition metal catalyzed asymmetric ring opening (ARO) of strained alkenes, which provides access to enantioenriched carbocyclic frameworks. Although a variety of coupling partners have been applied in this transformation, the use of soft carbon nucleophiles remains limited in scope. The first chapter describes a rhodium(I)-catalyzed ARO of meso-oxabicyclic alkenes using silyl enol ethers and ketene acetals. In analogy to the Mukaiyama aldol reaction, a novel silyl migration occurs, enabling an in situ protection of the chiral alcohols obtained. Developing new reactivity from Heck-type carbopalladation processes represents another research interest in the Lautens group. Oxidative addition into a carbonâ halogen bond constitutes the first step of nearly all palladium(0)-catalyzed cross-couplings. Conversely, reductive elimination from palladium(II) to yield an organohalide product represents a rare and often thermodynamically unfavoured process. The next two chapters address challenges in the synthesis of vinyl halides using palladium(0) catalysis via the intramolecular carbohalogenation and chlorocarbamoylation of alkynes. During our investigations, we discovered that the steric bulk of both the substrate and the phosphine ligand play an important role in promoting the desired reactivity. Mechanistic insight has been gained through combined experimental and computational studies, which implicate a palladium-catalyzed stereoisomerization in both of these transformations. Under certain conditions, we demonstrate that highly stereoselective trans-additions to alkynes can be achieved, which illustrates that specific substrate/catalyst combinations can override the inherent cis-selectivity in carbometallations. In the fourth chapter, a formal palladium(II)-catalyzed alkyne chlorocarbamoylation reaction is presented, which provides access to medicinally relevant methylene oxindole scaffolds. In contrast to the analogous protocol using palladium(0) catalysts, the reaction is initiated by an alkyne chloropalladation step, followed by intramolecular cross-coupling with a carbamoyl chloride. Experimental and computational studies provide insight into the mechanism of this reaction.


Rhodium-catalyzed [5+1] and [5+2] Cycloadditions Using 1,4-enyne as the Five-carbon Component

Rhodium-catalyzed [5+1] and [5+2] Cycloadditions Using 1,4-enyne as the Five-carbon Component

Author: Wangze Song

Publisher:

Published: 2016

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Transition metal-catalyzed cycloaddition reaction is one of the most efficient ways to access ring systems and remains to be one of the most active areas in organic chemistry. The discovery of 3-acyloxy-1,4-enyne (ACE) and 3-hydroxy-1,4-enyne (HYE) as the five-carbon components has led to the development of various Rh-catalyzed [5+1] and [5+2] cycloadditions in our group. These novel methods offered efficient access to highly substituted six- and seven-membered carbocycles. I will present our progresses on the development, application and mechanistic studies of the following four [5+1] and [5+2] cycloadditions. 1) Using ACE bearing an electron-rich ester as the five-carbon component, a [5+1] cycloaddition was realized under mild conditions for the preparation of highly substituted phenols. 2) Based on our previous success on Rh-catalyzed intermolecular [5+2] cycloaddition of ACE and alkynes, a library of highly substituted tropones was successfully prepared by modifying the cycloheptatriene products derived from the [5+2] cycloaddition. 3) The scope of the Rh-catalyzed intramolecular [5+2] cycloaddition of ACE with alkenes was expanded and the Rh-catalyzed intramolecular [5+2] cycloaddition of ACE with allenes was developed for the synthesis of highly functionalized bicyclic 5-7 fused ring systems with multiple stereogenic centers. 4) Using HYE as the 5-carbon component, a [5+1] carbonylative benzannulation reaction was previously developed in our group for the synthesis of tricyclic carbazoles. The scope of this tandem reaction is now expanded to the synthesis of tetra- and even pentacyclic ring systems including furocarbazoles, thiophenocarbazole, pyrrolocarbazole, and indolocarbazole. Metal carbene intermediates are involved in most of these cycloadditions. The strategy of using propargylic esters and propargylic alcohols as the Rh(I) carbene precursor should have broad implications in transition metal catalysis and metal carbene chemistry.