This book brings together new research information on the flow behaviour of cementitious materials from the UK, France, Italy, Germany, Poland, Finland, USSR, USA and Japan, presented at the International Conference organised by the British Society of Rheology in March 1990.
This book gathers the peer-reviewed contributions presented at two parallel, closely interconnected events on advanced construction materials and processes, namely the 2nd International RILEM Conference on Rheology and Processing of Construction Materials (RheoCon2) and the 9th International RILEM Symposium on Self-Compacting Concrete (SCC9), held in Dresden, Germany on 8-11 September 2019. The papers discuss various aspects of research on the development, testing, and applications of cement-based and other building materials together with their specific rheological properties. Furthermore, the papers cover the latest findings in the fast-growing field of self-compacting concrete, addressing topics including components’ properties and characterization; chemical admixtures, effect of binders (incl. geopolymers, calcined clay, etc.) and mixture design; laboratory and in-situ rheological testing; constitutive models and flow modelling; numerical simulations; mixing, processing and casting processes; and additive manufacturing / 3D-printing. Also presenting case studies, the book is of interest to researchers, graduate students, and industry specialists, such as material suppliers, consultants and construction experts.
This book introduces fundamentals, measurements, and applications of rheology of fresh cement-based materials. The rheology of a fresh cement-based material is one of its most important aspects, characterizing its flow and deformation, and governing the mixing, placement, and casting quality of a concrete. This is the first book to bring the field together on an increasingly important topic, as new types of cement-based materials and new concrete technologies are developed. It describes measurement equipment, procedures, and data interpretation of the rheology of cement paste and concrete, as well as applications such as self-compacting concrete, pumping, and 3D printing. A range of other cement-based materials such as fiber-reinforced concrete, cemented paste backfills, and alkali-activated cement are also examined. Rheology of Fresh Cement-Based Materials serves as a reference book for researchers and engineers, and a textbook for advanced undergraduate and graduate students.
Estimating, modelling, controlling and monitoring the flow of concrete is a vital part of the construction process, as the properties of concrete before it has set can have a significant impact on performance. This book provides a detailed overview of the rheological behaviour of concrete, including measurement techniques, the impact of mix design, and casting.Part one begins with two introductory chapters dealing with the rheology and rheometry of complex fluids, followed by chapters that examine specific measurement and testing techniques for concrete. The focus of part two is the impact of mix design on the rheological behaviour of concrete, looking at additives including superplasticizers and viscosity agents. Finally, chapters in part three cover topics related to casting, such as thixotropy and formwork pressure.With its distinguished editor and expert team of contributors, Understanding the rheology of concrete is an essential reference for researchers, materials specifiers, architects and designers in any section of the construction industry that makes use of concrete, and will also benefit graduate and undergraduate students of civil engineering, materials and construction. - Provides a detailed overview of the rheological behaviour of concrete, including measurement techniques, casting and the impact of mix design - The estimating, modelling, controlling and monitoring of concrete flow is comprehensively discussed - Chapters examine specific measurement and testing techniques for concrete, the impact of mix design on the rheological behaviour of concrete, particle packaging and viscosity-enhancing admixtures
Pore Structure of Cement-Based Materials provides a thorough treatment of the experimental techniques used to characterize the pore structure of materials. The text presents the principles and practical applications of the techniques used, organized in an easy-to-follow and uncomplicated manner, providing the theoretical background, the way to analyze experimental data, and the factors affecting the results. The book is the single comprehensive source of the techniques most commonly used for pore structure analysis, covering simple techniques like mercury intrusion porosimetry and water absorption, to the more sophisticated small-angle scattering and nuclear magnetic resonance. The book is an essential reference text for researchers, users, and students in materials science, applied physics, and civil engineering, who seek a deep understanding of the principles and limitations of the techniques used for pore structure analysis of cement-based materials.
This book presents the work of the RILEM TC 266-MRP, whose purpose was to enhance the reliability of rheological measurements performed on cement-based materials. It makes users more aware of potential sources of errors in the measurements, and provide guidelines on how to observe, counteract or eliminate the errors. Improving the reliability of rheological measurements will further enhance the use of rheology to investigate different aspects of the fresh properties of cement-based materials. After an introduction into mix design and applications, the book delivers a comprehensive overview of rheology definitions, behavior, and parameters; rheometers; measuring and analysis procedures; difficulties and challenges during measurements; relationships with specific empirical tests; and the behavior of concrete near a surface. This report on the measurement of rheological properties of complex materials such as concrete enables readers to understand the applicable concepts of rheology, and address the challenges on the measuring procedures, the rheological models and some errors and limitations of rheometers used.
Fresh concrete must be produced with the properties required for its intended applications, for example, it must be workable enough to flow into formwork, and to be compacted. This book deals with the measurement of the flow properties of fresh concrete and the factors which affect its workability. Aspects of concrete mixes and control of manufacture to produce optimum properties which relate to workability are covered.
This is the state-of-the-art report prepared by the RILEM TC “Application of Super Absorbent Polymers (SAP) in concrete construction”. It gives a comprehensive overview of the properties of SAP, specific water absorption and desorption behaviour of SAP in fresh and hardening concrete, effects of the SAP addition on rheological properties of fresh concrete, changes of cement paste microstructure and mechanical properties of concrete. Furthermore, the key advantages of using SAP are described in detail: the ability of this material to act as an internal curing agent to mitigate autogenous shrinkage of high-performance concrete, the possibility to use SAP as an alternative to air-entrainment agents in order to increase the frost resistance of concrete, and finally, the benefit of steering the rheology of fresh cement-based materials. The final chapter describes the first existing and numerous prospective applications for this new concrete additive.