Engineering Rock Mass Classification

Engineering Rock Mass Classification

Author: R K Goel

Publisher: Elsevier

Published: 2011-08-09

Total Pages: 382

ISBN-13: 0123858798

DOWNLOAD EBOOK

Rock mass classification methods are commonly used at the preliminary design stages of a construction project when there is very little information. It forms the bases for design and estimation of the required amount and type of rock support and groundwater control measures. Encompassing nearly all aspects of rock mass classifications in detail, Civil Engineering Rock Mass Classification: Tunnelling, Foundations and Landsides provides construction engineers and managers with extensive practical knowledge which is time-tested in the projects in Himalaya and other parts of the world in complex geological conditions. Rock mass classification is an essential element of feasibility studies for any near surface construction project prior to any excavation or disturbances made to earth. Written by an author team with over 50 years of experience in some of the most difficult mining regions of the world, Civil Engineering Rock Mass Classification: Tunnelling, Foundations and Landsides provides construction engineers, construction managers and mining engineers with the tools and methods to gather geotechnical data, either from rock cuts, drifts or core, and process the information for subsequent analysis. The goal is to use effective mapping techniques to obtain data can be used as input for any of the established rock classification systems. The book covers all of the commonly used classification methods including: Barton's Q and Q' systems, Bieniawski's RMR, Laubscher's MRMR and Hoek's and GSI systems. With this book in hand, engineers will be able to gather geotechnical data, either from rock cuts, drifts or core, and process the information for subsequent analysis. Rich with international case studies and worked out equations, the focus of the book is on the practical gathering information for purposes of analysis and design. - Identify the most significant parameters influencing the behaviour of a rock mass - Divide a particular rock mass formulation into groups of similar behaviour, rock mass classes of varying quality - Provide a basis of understanding the characteristics of each rock mass class - Relate the experience of rock conditions at one site to the conditions and experience encountered at others - Derive quantitative data and guidelines for engineering design - Provide common basis for communication between engineers and geologists


Composition and Properties of Drilling and Completion Fluids

Composition and Properties of Drilling and Completion Fluids

Author: Ryen Caenn

Publisher: Gulf Professional Publishing

Published: 2011-09-29

Total Pages: 721

ISBN-13: 0123838592

DOWNLOAD EBOOK

The petroleum industry in general has been dominated by engineers and production specialists. The upstream segment of the industry is dominated by drilling/completion engineers. Usually, neither of those disciplines have a great deal of training in the chemistry aspects of drilling and completing a well prior to its going on production. The chemistry of drilling fluids and completion fluids have a profound effect on the success of a well. For example, historically the drilling fluid costs to drill a well have averaged around 7% of the overall cost of the well, before completion. The successful delivery of up to 100% of that wellbore, in many cases may be attributable to the fluid used. Considered the "bible" of the industry, Composition and Properties of Drilling and Completion Fluids, first written by Walter Rogers in 1948, and updated on a regular basis thereafter, is a key tool to achieving successful delivery of the wellbore. In its Sixth Edition, Composition and Properties of Drilling and Completion Fluids has been updated and revised to incorporate new information on technology, economic, and political issues that have impacted the use of fluids to drill and complete oil and gas wells. With updated content on Completion Fluids and Reservoir Drilling Fluids, Health, Safety & Environment, Drilling Fluid Systems and Products, new fluid systems and additives from both chemical and engineering perspectives, Wellbore Stability, adding the new R&D on water-based muds, and with increased content on Equipment and Procedures for Evaluating Drilling Fluid Performance in light of the advent of digital technology and better manufacturing techniques, Composition and Properties of Drilling and Completion Fluids has been thoroughly updated to meet the drilling and completion engineer's needs. - Explains a myriad of new products and fluid systems - Cover the newest API/SI standards - New R&D on water-based muds - New emphases on Health, Safety & Environment - New Chapter on waste management and disposal


Lost Circulation and Wellbore Strengthening

Lost Circulation and Wellbore Strengthening

Author: Yongcun Feng

Publisher: Springer

Published: 2018-05-01

Total Pages: 94

ISBN-13: 3319894358

DOWNLOAD EBOOK

This book focuses on the underlying mechanisms of lost circulation and wellbore strengthening, presenting a comprehensive, yet concise, overview of the fundamental studies on lost circulation and wellbore strengthening in the oil and gas industry, as well as a detailed discussion on the limitations of the wellbore strengthening methods currently used in industry. It provides several advanced analytical and numerical models for lost circulation and wellbore strengthening simulations under realistic conditions, as well as their results to illustrate the capabilities of the models and to investigate the influences of key parameters. In addition, experimental results are provided for a better understanding of the subject. The book provides useful information for drilling and completion engineers wishing to solve the problem of lost circulation using wellbore strengthening techniques. It is also a valuable resource for industrial researchers and graduate students pursuing fundamental research on lost circulation and wellbore strengthening, and can be used as a supplementary reference for college courses, such as drilling and completion engineering and petroleum geomechanics.


Practical Wellbore Hydraulics and Hole Cleaning

Practical Wellbore Hydraulics and Hole Cleaning

Author: Mark S. Ramsey

Publisher: Gulf Professional Publishing

Published: 2019-01-22

Total Pages: 341

ISBN-13: 0128170891

DOWNLOAD EBOOK

Practical Wellbore Hydraulics and Hole Cleaning presents a single resource with explanations, equations and descriptions that are important for wellbore hydraulics, including hole cleaning. Involving many moving factors and complex issues, this book provides a systematic and practical summary of solutions, thus helping engineers understand calculations, case studies and guidelines not found anywhere else. Topics such as the impact of temperature and pressure of fluid properties are covered, as are vertical and deviated-from-vertical hole cleaning differences. The importance of bit hydraulics optimization, drilling fluid challenges, pressure drop calculations, downhole properties, and pumps round out the information presented. Packed with example calculations and handy appendices, this book gives drilling engineers the tools they need for effective bit hydraulics and hole cleaning operation design. Provides practical techniques to ensure hole cleaning in both vertical and deviated wells Addresses errors in predictive wellbore hydraulic modeling equations and provides remedies Teaches how to improve the economic efficiencies of drilling oil and gas wells using calculations, guidelines and case studies


Introduction to Permanent Plug and Abandonment of Wells

Introduction to Permanent Plug and Abandonment of Wells

Author: Mahmoud Khalifeh

Publisher: Springer Nature

Published: 2020-01-27

Total Pages: 285

ISBN-13: 3030399702

DOWNLOAD EBOOK

This open access book offers a timely guide to challenges and current practices to permanently plug and abandon hydrocarbon wells. With a focus on offshore North Sea, it analyzes the process of plug and abandonment of hydrocarbon wells through the establishment of permanent well barriers. It provides the reader with extensive knowledge on the type of barriers, their functioning and verification. It then discusses plug and abandonment methodologies, analyzing different types of permanent plugging materials. Last, it describes some tests for verifying the integrity and functionality of installed permanent barriers. The book offers a comprehensive reference guide to well plugging and abandonment (P&A) and well integrity testing. The book also presents new technologies that have been proposed to be used in plugging and abandoning of wells, which might be game-changing technologies, but they are still in laboratory or testing level. Given its scope, it addresses students and researchers in both academia and industry. It also provides information for engineers who work in petroleum industry and should be familiarized with P&A of hydrocarbon wells to reduce the time of P&A by considering it during well planning and construction.


Geologic Carbon Sequestration

Geologic Carbon Sequestration

Author: V. Vishal

Publisher: Springer

Published: 2016-05-11

Total Pages: 336

ISBN-13: 3319270192

DOWNLOAD EBOOK

This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.


Chemical Enhanced Oil Recovery

Chemical Enhanced Oil Recovery

Author: Patrizio Raffa

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-07-22

Total Pages: 186

ISBN-13: 3110640252

DOWNLOAD EBOOK

This book aims at presenting, describing, and summarizing the latest advances in polymer flooding regarding the chemical synthesis of the EOR agents and the numerical simulation of compositional models in porous media, including a description of the possible applications of nanotechnology acting as a booster of traditional chemical EOR processes. A large part of the world economy depends nowadays on non-renewable energy sources, most of them of fossil origin. Though the search for and the development of newer, greener, and more sustainable sources have been going on for the last decades, humanity is still fossil-fuel dependent. Primary and secondary oil recovery techniques merely produce up to a half of the Original Oil In Place. Enhanced Oil Recovery (EOR) processes are aimed at further increasing this value. Among these, chemical EOR techniques (including polymer flooding) present a great potential in low- and medium-viscosity oilfields. • Describes recent advances in chemical enhanced oil recovery. • Contains detailed description of polymer flooding and nanotechnology as promising boosting tools for EOR. • Includes both experimental and theoretical studies. About the Authors Patrizio Raffa is Assistant Professor at the University of Groningen. He focuses on design and synthesis of new polymeric materials optimized for industrial applications such as EOR, coatings and smart materials. He (co)authored about 40 articles in peer reviewed journals. Pablo Druetta works as lecturer at the University of Groningen (RUG) and as engineering consultant. He received his Ph.D. from RUG in 2018 and has been teaching at a graduate level for 15 years. His research focus lies on computational fluid dynamics (CFD).


Submarine Mass Movements and Their Consequences

Submarine Mass Movements and Their Consequences

Author: Sebastian Krastel

Publisher: Springer Science & Business Media

Published: 2013-09-02

Total Pages: 677

ISBN-13: 3319009729

DOWNLOAD EBOOK

Submarine mass movements are a hidden geohazard with large destructive potential for submarine installations and coastal areas. This hazard and associated risk is growing in proportion with increasing population of coastal urban agglomerations, industrial infrastructure, and coastal tourism. Also, the intensified use of the seafloor for natural resource production, and deep sea cables constitutes an increasing risk. Submarine slides may alter the coastline and bear a high tsunamogenic potential. There is a potential link of submarine mass wasting with climate change, as submarine landslides can uncover and release large amounts greenhouse gases, mainly methane, that are now stored in marine sediments. The factors that govern the stability of submarine slopes against failure, the processes that lead to slope collapses and the collapse processes by themselves need to be better understood in order to foresee and prepare society for potentially hazardous events. This book volume consists of a collection of cutting edge scientific research by international experts in the field, covering geological, geophysical, engineering and environmental aspects of submarine slope failures. The focus is on understanding the full spectrum of challenges presented by this major coastal and offshore geohazard.


Processing of Heavy Crude Oils

Processing of Heavy Crude Oils

Author: Ramasamy Marappa Gounder

Publisher: Intechopen

Published: 2019

Total Pages: 274

ISBN-13: 1839684097

DOWNLOAD EBOOK

Unconventional heavy crude oils are replacing the conventional light crude oils slowly but steadily as a major energy source. Heavy crude oils are cheaper and present an opportunity to the refiners to process them with higher profit margins. However, the unfavourable characteristics of heavy crude oils such as high viscosity, low API gravity, low H/C ratio, chemical complexity with high asphaltenes content, high acidity, high sulfur and increased level of metal and heteroatom impurities impede extraction, pumping, transportation and processing. Very poor mobility of the heavy oils, due to very high viscosities, significantly affects production and transportation. Techniques for viscosity reduction, drag reduction and in-situ upgrading of the crude oil to improve the flow characteristics in pipelines are presented in this book. The heavier and complex molecules of asphaltenes with low H/C ratios present many technological challenges during the refining of the crude oil, such as heavy coking on catalysts. Hydrogen addition and carbon removal are the two approaches used to improve the recovery of value-added products such as gasoline and diesel. In addition, the heavy crude oil needs pre-treatment to remove the high levels of impurities before the crude oil can be refined. This book introduces the major challenges and some of the methods to overcome them.