Modern RF and Microwave Measurement Techniques

Modern RF and Microwave Measurement Techniques

Author: Valeria Teppati

Publisher: Cambridge University Press

Published: 2013-06-20

Total Pages: 475

ISBN-13: 1107036410

DOWNLOAD EBOOK

A comprehensive, hands-on review of the most up-to-date techniques in RF and microwave measurement, including practical advice on deployment challenges.


On-Wafer Microwave Measurements and De-embedding

On-Wafer Microwave Measurements and De-embedding

Author: Errikos Lourandakis

Publisher: Artech House

Published: 2016-07-31

Total Pages: 251

ISBN-13: 1630813710

DOWNLOAD EBOOK

This new authoritative resource presents the basics of network analyzer measurement equipment and troubleshooting errors involved in the on-wafer microwave measurement process. This book bridges the gap between theoretical and practical information using real-world practices that address all aspects of on-wafer passive device characterization in the microwave frequency range up to 60GHz. Readers find data and measurements from silicon integrated passive devices fabricated and tested in advance CMOS technologies. Basic circuit equations, terms and fundamentals of time and frequency domain analysis are covered. This book also explores the basics of vector network analyzers (VNA), two port S-parameter measurement routines, signal flow graphs, network theory, error models and VNA calibrations with the use of calibration standards.


Handbook of Microwave Component Measurements

Handbook of Microwave Component Measurements

Author: Joel P. Dunsmore

Publisher: John Wiley & Sons

Published: 2020-06-29

Total Pages: 852

ISBN-13: 1119477131

DOWNLOAD EBOOK

Handbook of Microwave Component Measurements Second Edition is a fully updated, complete reference to this topic, focusing on the modern measurement tools, such as a Vector Network Analyzer (VNA), gathering in one place all the concepts, formulas, and best practices of measurement science. It includes basic concepts in each chapter as well as appendices which provide all the detail needed to understand the science behind microwave measurements. The book offers an insight into the best practices for ascertaining the true nature of the device-under-test (DUT), optimizing the time to setup and measure, and to the greatest extent possible, remove the effects of the measuring equipment from that result. Furthermore, the author writes with a simplicity that is easily accessible to the student or new engineer, yet is thorough enough to provide details of measurement science for even the most advanced applications and researchers. This welcome new edition brings forward the most modern techniques used in industry today, and recognizes that more new techniques have developed since the first edition published in 2012. Whilst still focusing on the VNA, these techniques are also compatible with other vendor's advanced equipment, providing a comprehensive industry reference.


Handbook of Microwave Component Measurements

Handbook of Microwave Component Measurements

Author: Joel P. Dunsmore

Publisher: John Wiley & Sons

Published: 2012-08-15

Total Pages: 620

ISBN-13: 111839125X

DOWNLOAD EBOOK

This book provides state-of-the-art coverage for making measurements on RF and Microwave Components, both active and passive. A perfect reference for R&D and Test Engineers, with topics ranging from the best practices for basic measurements, to an in-depth analysis of errors, correction methods, and uncertainty analysis, this book provides everything you need to understand microwave measurements. With primary focus on active and passive measurements using a Vector Network Analyzer, these techniques and analysis are equally applicable to measurements made with Spectrum Analyzers or Noise Figure Analyzers. The early chapters provide a theoretical basis for measurements complete with extensive definitions and descriptions of component characteristics and measurement parameters. The latter chapters give detailed examples for cases of cable, connector and filter measurements; low noise, high-gain and high power amplifier measurements, a wide range of mixer and frequency converter measurements, and a full examination of fixturing, de-embedding, balanced measurements and calibration techniques. The chapter on time-domain theory and measurements is the most complete treatment on the subject yet presented, with details of the underlying mathematics and new material on time domain gating. As the inventor of many of the methods presented, and with 30 years as a development engineer on the most modern measurement platforms, the author presents unique insights into the understanding of modern measurement theory. Key Features: Explains the interactions between the device-under-test (DUT) and the measuring equipment by demonstrating the best practices for ascertaining the true nature of the DUT, and optimizing the time to set up and measure Offers a detailed explanation of algorithms and mathematics behind measurements and error correction Provides numerous illustrations (e.g. block-diagrams for circuit connections and measurement setups) and practical examples on real-world devices, which can provide immediate benefit to the reader Written by the principle developer and designer of many of the measurement methods described This book will be an invaluable guide for RF and microwave R&D and test engineers, satellite test engineers, radar engineers, power amplifier designers, LNA designers, and mixer designers. University researchers and graduate students in microwave design and test will also find this book of interest.


Microwave Electronics

Microwave Electronics

Author: L. F. Chen

Publisher: John Wiley & Sons

Published: 2004-11-19

Total Pages: 552

ISBN-13: 0470020458

DOWNLOAD EBOOK

The development of high speed, high frequency circuits and systems requires an understanding of the properties of materials functioning at the microwave level. This comprehensive reference sets out to address this requirement by providing guidance on the development of suitable measurement methodologies tailored for a variety of materials and application systems. Bringing together coverage of a broad range of techniques in one publication for the first time, this book: Provides a comprehensive introduction to microwave theory and microwave measurement techniques. Examines every aspect of microwave material properties, circuit design and applications. Presents materials property characterisation methods along with a discussion of the underlying theory. Outlines the importance of microwave absorbers in the reduction in noise levels in microwave circuits and their importance within defence industry applications. Relates each measurement technique to its application across the fields of microwave engineering, high-speed electronics, remote sensing and the physical sciences. This book will appeal to practising engineers and technicians working in the areas of RF, microwaves, communications, solid-state devices and radar. Senior students, researchers in microwave engineering and microelectronics and material scientists will also find this book a very useful reference.


Planar Microwave Engineering

Planar Microwave Engineering

Author: Thomas H. Lee

Publisher: Cambridge University Press

Published: 2004-08-30

Total Pages: 868

ISBN-13: 1316175774

DOWNLOAD EBOOK

Modern wireless communications hardware is underpinned by RF and microwave design techniques. This insightful book contains a wealth of circuit layouts, design tips, and practical measurement techniques for building and testing practical gigahertz systems. The book covers everything you need to know to design, build, and test a high-frequency circuit. Microstrip components are discussed, including tricks for extracting good performance from cheap materials. Connectors and cables are also described, as are discrete passive components, antennas, low-noise amplifiers, oscillators, and frequency synthesizers. Practical measurement techniques are presented in detail, including the use of network analyzers, sampling oscilloscopes, spectrum analyzers, and noise figure meters. Throughout the focus is practical, and many worked examples and design projects are included. There is also a CD-ROM that contains a variety of design and analysis programs. The book is packed with indispensable information for students taking courses on RF or microwave circuits and for practising engineers.


An Introduction to Microwave Measurements

An Introduction to Microwave Measurements

Author: Ananjan Basu

Publisher: CRC Press

Published: 2014-12-18

Total Pages: 314

ISBN-13: 1482214369

DOWNLOAD EBOOK

Go Beyond Basic Distributed Circuit AnalysisAn Introduction to Microwave Measurements has been written in a way that is different from many textbooks. As an instructor teaching a master's-level course on microwave measurements, the author recognized that few of today's graduate electrical engineering students are knowledgeable about microwave measu


Principles and Applications of RF/Microwave in Healthcare and Biosensing

Principles and Applications of RF/Microwave in Healthcare and Biosensing

Author: Changzhi Li

Publisher: Academic Press

Published: 2016-10-05

Total Pages: 343

ISBN-13: 0128092181

DOWNLOAD EBOOK

This reference, written by leading authorities in the field, gives basic theory, implementation details, advanced research, and applications of RF and microwave in healthcare and biosensing. It first provides a solid understanding of the fundamentals with coverage of the basics of microwave engineering and the interaction between electromagnetic waves and biomaterials. It then presents the state-of-the-art development in microwave biosensing, implantable devices -including applications of microwave technology for sensing biological tissues – and medical diagnosis, along with applications involving remote patient monitoring. this book is an ideal reference for RF and microwave engineer working on, or thinking of working on, the applications of RF and Microwave technology in medicine and biology. Learn: - The fundamentals of RF and microwave engineering in healthcare and biosensing - How to combine biological and medical aspects of the field with underlying engineering concepts - How to implement microwave biosensing for material characterization and cancer diagnosis - Applications and functioning of wireless implantable biomedical devices and microwave non-contact biomedical radars - How to combine devices, systems, and methods for new practical applications - The first book to review the fundamentals, latest developments, and future trends in this important emerging field with emphasis on engineering aspects of sensing, monitoring, and diagnosis using RF and Microwave - Extensive coverage of biosensing applications are included - Written by leaders in the field, including members of the Technical Coordinating Committee of the Biological Effects and Medical Applications of the IEEE Microwave Theory and Techniques Society


High Frequency Techniques

High Frequency Techniques

Author: Joseph F. White

Publisher: John Wiley & Sons

Published: 2016-08-01

Total Pages: 524

ISBN-13: 1119244501

DOWNLOAD EBOOK

This textbook is an introduction to microwave engineering. The scope of this book extends from topics for a first course in electrical engineering, in which impedances are analyzed using complex numbers, through the introduction of transmission lines that are analyzed using the Smith Chart, and on to graduate level subjects, such as equivalent circuits for obstacles in hollow waveguides, analyzed using Green’s Functions. This book is a virtual encyclopedia of circuit design methods. Despite the complexity, topics are presented in a conversational manner for ease of comprehension. The book is not only an excellent text at the undergraduate and graduate levels, but is as well a detailed reference for the practicing engineer. Consider how well informed an engineer will be who has become familiar with these topics as treated in High Frequency Techniques: (in order of presentation) Brief history of wireless (radio) and the Morse code U.S. Radio Frequency Allocations Introduction to vectors AC analysis and why complex numbers and impedance are used Circuit and antenna reciprocity Decibel measure Maximum power transfer Skin effect Computer simulation and optimization of networks LC matching of one impedance to another Coupled Resonators Uniform transmission lines for propagation VSWR, return Loss and mismatch error The Telegrapher Equations (derived) Phase and Group Velocities The Impedance Transformation Equation for lines (derived) Fano's and Bode's matching limits The Smith Chart (derived) Slotted Line impedance measurement Constant Q circles on the Smith Chart Approximating a transmission line with lumped L's and C's ABCD, Z, Y and Scattering matrix analysis methods for circuits Statistical Design and Yield Analysis of products Electromagnetic Fields Gauss's Law Vector Dot Product, Divergence and Curl Static Potential and Gradient Ampere's Law and Vector Curl Maxwell's Equations and their visualization The Laplacian Rectangular, cylindrical and spherical coordinates Skin Effect The Wave Equation The Helmholtz Equations Plane Propagating Waves Rayleigh Fading Circular (elliptic) Polarization Poynting's Theorem EM fields on Transmission Lines Calculating the impedance of coaxial lines Calculating and visualizing the fields in waveguides Propagation constants and waveguide modes The Taylor Series Expansion Fourier Series and Green's Functions Higher order modes and how to suppress them Vector Potential and Retarded Potentials Wire and aperture antennas Radio propagation and path loss Electromagnetic computer simulation of structures Directional couplers The Rat Race Hybrid Even and Odd Mode Analysis applied to the backward wave coupler Network analyzer impedance and transmission measurements Two-port Scattering Parameters (s matrix) The Hybrid Ring coupler The Wilkinson power divider Filter design: Butterworth, Maximally flat & Tchebyscheff responses Filter Q Diplexer, Bandpass and Elliptic filters Richard's Transformation & Kuroda’s Identities Mumford's transmission line stub filters Transistor Amplifier Design: gain, biasing, stability, and conjugate matching Noise in systems, noise figure of an amplifier cascade Amplifier non-linearity, and spurious free dynamic range Statistical Design and Yield Analysis


Microwave, Radar & RF Engineering

Microwave, Radar & RF Engineering

Author: Prakash Kumar Chaturvedi

Publisher: Springer

Published: 2018-06-20

Total Pages: 474

ISBN-13: 981107965X

DOWNLOAD EBOOK

This is a textbook for upper undergraduate and graduate courses on microwave engineering, written in a student-friendly manner with many diagrams and illustrations. It works towards developing a foundation for further study and research in the field. The book begins with a brief history of microwaves and introduction to core concepts of EM waves and wave guides. It covers equipment and concepts involved in the study and measurement of microwaves. The book also discuses microwave propagation in space, microwave antennae, and all aspects of RADAR. The book provides core pedagogy with chapter objectives, summaries, solved examples, and end-of-chapter exercises. The book also includes a bonus chapter which serves as a lab manual with 15 simple experiments detailed with proper circuits, precautions, sample readings, and quiz/viva questions for each experiment. This book will be useful to instructors and students alike.