Resonances: Engaging Music in Its Cultural Context offers a fresh curriculum for the college-level music appreciation course. The musical examples are drawn from classical, popular, and folk traditions from around the globe. These examples are organized into thematic chapters, each of which explores a particular way in which human beings use music. Topics include storytelling, political expression, spirituality, dance, domestic entertainment, and more. The chapters and examples can be taught in any order, making Resonances a flexible resource that can be adapted to your teaching or learning needs. This textbook is accompanied by a complete set of PowerPoint slides, a test bank, and learning objectives.
Scattering resonances generalize bound states/eigenvalues for systems in which energy can scatter to infinity. A typical resonance has a rate of oscillation (just as a bound state does) and a rate of decay. Although the notion is intrinsically dynamical, an elegant mathematical formulation comes from considering meromorphic continuations of Green's functions. The poles of these meromorphic continuations capture physical information by identifying the rate of oscillation with the real part of a pole and the rate of decay with its imaginary part. An example from mathematics is given by the zeros of the Riemann zeta function: they are, essentially, the resonances of the Laplacian on the modular surface. The Riemann hypothesis then states that the decay rates for the modular surface are all either or . An example from physics is given by quasi-normal modes of black holes which appear in long-time asymptotics of gravitational waves. This book concentrates mostly on the simplest case of scattering by compactly supported potentials but provides pointers to modern literature where more general cases are studied. It also presents a recent approach to the study of resonances on asymptotically hyperbolic manifolds. The last two chapters are devoted to semiclassical methods in the study of resonances.
The pace of modern life is undoubtedly speeding up, yet this acceleration does not seem to have made us any happier or more content. If acceleration is the problem, then the solution, argues Hartmut Rosa in this major new work, lies in “resonance.” The quality of a human life cannot be measured simply in terms of resources, options, and moments of happiness; instead, we must consider our relationship to, or resonance with, the world. Applying his theory of resonance to many domains of human activity, Rosa describes the full spectrum of ways in which we establish our relationship to the world, from the act of breathing to the adoption of culturally distinct worldviews. He then turns to the realms of concrete experience and action – family and politics, work and sports, religion and art – in which we as late modern subjects seek out resonance. This task is proving ever more difficult as modernity’s logic of escalation is both cause and consequence of a distorted relationship to the world, at individual and collective levels. As Rosa shows, all the great crises of modern society – the environmental crisis, the crisis of democracy, the psychological crisis – can also be understood and analyzed in terms of resonance and our broken relationship to the world around us. Building on his now classic work on acceleration, Rosa’s new book is a major new contribution to the theory of modernity, showing how our problematic relation to the world is at the crux of some of the most pressing issues we face today. This bold renewal of critical theory for our times will be of great interest to students and scholars across the social sciences and humanities.
This book on electromagnetic resonance phenomena describes a general approach to physical problems, ways to solve them, and properties of the solutions obtained. Attention is given to the discussion and interpretation of formal and experimental data and their links to global atmospheric conditions such as the dynamics of global thunderstorm activity, variations of the effective height of the lower ionosphere, etc. Schumann resonance is related to worldwide thunderstorm activity, and simultaneously, to global properties of the lower ionosphere. Transverse resonance is predominantly a local phenomenon containing information on the local height and conductivity of the lower ionosphere and on nearby thunderstorm activity. Transient events in ELF-VLF radio propagation are also treated. These are natural pulsed radio signals and/or abrupt changes of manmade VLF radio signals. The transients associated with cloud-to-ionosphere discharges (red sprites, blue jets, trolls) are discussed, and clarification of the underlying physical ideas and their practical applications to pioneer results achieved in the field recently are emphasised.
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques involved in numerical simulations. Though primarily intended for graduate students, it can also be considered a reference book for any researcher interested in the dynamics of resonant phenomena.
"\berall's work in acoustic and electromagnetic scattering has evoked much interest, in the US as well as abroad, because of its possible practical applications, as well as the theoretical understanding. Many collaborators have been inspired by it, and have now contributed to this volume. The book is an excellent contribution to the literature of Acoustics and Wave Propagation. Professor Guran is to be congratulated for organizing and editing this volume." Prof. Hans A Bethe Noble Laureate Cornell University, 1996
Advances in understanding the interactions between light and subwavelength materials have enabled the author and his collaborators to tailor unique optical responses at the nanoscale. In particular, metallic nanostructures capable of supporting surface plasmons can be designed to possess spectrally narrow plasmon resonances, which are of particular interest due to their exceptional sensitivity to their local environment. In turn, combining plasmonic nanostructures with other materials in hybrid systems allows this sensitivity to be exploited in a broad range of applications. In this book the author explores two different approaches to attaining narrow plasmon resonances: in gold nanoparticle arrays by utilising diffraction coupling, and in copper thin films covered by a protective graphene layer. The performance of these resonances is then considered in a number of applications. Nanoparticle arrays are used along with an atomic heterostructure as elements in a nanomechanical electro-optical modulator that is capable of strong, broadband modulation. Strong coupling between diffraction-coupled plasmon resonances and a gold nanoparticle array and guided modes in a dielectric slab is used to construct a hybrid waveguide. Lastly, the extreme phase sensitivity of graphene-protected copper is used to detect trace quantities of small toxins in solution far below the detection limit of commercial surface plasmon resonance sensors.
This book discusses the development of Fano-based techniques and reveals the characteristic properties of various wave processes by studying interference phenomena. It explains that the interaction of discrete (localized) states with a continuum of propagation modes leads to Fano interference effects in transmission, and explores novel coherent effects such as bound states in the continuum accompanied by collapse of Fano resonance. Originating in atomic physics, Fano resonances have become one of the most appealing phenomena of wave scattering in optics, microwaves, and terahertz techniques. The generation of extremely strong and confined fields at a deep subwavelength scale, far beyond the diffraction limit, plays a central role in modern plasmonics, magnonics, and in photonic and metamaterial structures. Fano resonance effects take advantage of the coupling of these bound states with a continuum of radiative electromagnetic waves. With their unique physical properties and unusual combination of classical and quantum structures, Fano resonances have an application potential in a wide range of fields, from telecommunication to ultrasensitive biosensing, medical instrumentation and data storage. Including contributions by international experts and covering the essential aspects of Fano-resonance effects, including theory, modeling and design, proven and potential applications in practical devices, fabrication, characterization and measurement, this book enables readers to acquire the multifaceted understanding required for these multidisciplinary challenges.
This unique volume provides a broad introduction to plasmon resonances in nanoparticles and their novel applications. Here, plasmon resonances are treated as an eigenvalue problem for specific boundary integral equations and general physical properties of plasmon spectrum are studied in detail. The coupling of incident radiation to specific plasmon modes, the time dynamics of their excitation and dephasing are also analytically treated. Finally, the applications of plasmon resonances to SERS, light controllability (gating) of plasmon resonances in semiconductor nanoparticles, the use of plasmon resonances in thermally assisted magnetic recording (TAMR), as well as in all-optical magnetic recording and for enhancement of magneto-optic effects are presented.