Resiliency of Power Distribution Systems

Resiliency of Power Distribution Systems

Author: Anurag K. Srivastava

Publisher: John Wiley & Sons

Published: 2024-02-05

Total Pages: 405

ISBN-13: 1119418674

DOWNLOAD EBOOK

RESILIENCY OF POWER DISTRIBUTION SYSTEMS A revolutionary book covering the relevant concepts for resiliency-focused advancements of the distribution power grid Most resiliency and security guidelines for the power industry are focused on power transmission systems. As renewable energy and energy storage increasingly replace fossil-fuel-based power generation over the coming years, geospatially neighboring distributed energy resources will supply a majority of consumers and provide clean power through long transmission lines. These electric power distribution systems—the final stage in the delivery of electric power—carry electricity from the transmission system to individual consumers. New distributed devices will be essential to the grid to manage this variable power generation and enhance reliability and resilience while keeping electricity affordable as the world seeks solutions to climate change and threats from extreme events. In Resiliency of Power Distribution Systems, readers are provided with the tools to understand and enhance resiliency of distribution systems—and thereby, the entire power grid. In a shift from the present design and operation of the power system, the book is focused on improving the grid’s ability to predict, adapt, and respond to all hazards and threats. This, then, acts as a guide to ensure that any incident can be mitigated and responded to promptly and adequately. It also highlights the most advanced and applicable methodologies and architecture frameworks that evaluate degradation, advance proactive action, and transform system behavior to maintain normal operation, under extreme operating conditions. Resiliency of Power Distribution Systems readers will also find: Chapter organization that facilitates quick review of distribution fundamental and easy-but-thorough understanding of the importance of resiliency Real-world case studies where resilient power systems could have prevented massive financial and energy losses Frameworks to help mitigate cyber-physical attacks, strategize response on multiple timescales, and optimize operational efficiencies and priorities for the power grid Resiliency of Power Distribution Systems is a valuable reference for power system professionals including electrical engineers, utility operators, distribution system planners and engineers, and manufacturers, as well as members of the research community, energy market experts and policy makers, and graduate students on electrical engineering courses.


Enhancing the Resilience of the Nation's Electricity System

Enhancing the Resilience of the Nation's Electricity System

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2017-10-25

Total Pages: 171

ISBN-13: 0309463076

DOWNLOAD EBOOK

Americans' safety, productivity, comfort, and convenience depend on the reliable supply of electric power. The electric power system is a complex "cyber-physical" system composed of a network of millions of components spread out across the continent. These components are owned, operated, and regulated by thousands of different entities. Power system operators work hard to assure safe and reliable service, but large outages occasionally happen. Given the nature of the system, there is simply no way that outages can be completely avoided, no matter how much time and money is devoted to such an effort. The system's reliability and resilience can be improved but never made perfect. Thus, system owners, operators, and regulators must prioritize their investments based on potential benefits. Enhancing the Resilience of the Nation's Electricity System focuses on identifying, developing, and implementing strategies to increase the power system's resilience in the face of events that can cause large-area, long-duration outages: blackouts that extend over multiple service areas and last several days or longer. Resilience is not just about lessening the likelihood that these outages will occur. It is also about limiting the scope and impact of outages when they do occur, restoring power rapidly afterwards, and learning from these experiences to better deal with events in the future.


Power Systems Resilience

Power Systems Resilience

Author: Naser Mahdavi Tabatabaei

Publisher: Springer

Published: 2018-08-16

Total Pages: 366

ISBN-13: 3319944428

DOWNLOAD EBOOK

This book presents intuitive explanations of the principles and applications of power system resiliency, as well as a number of straightforward and practical methods for the impact analysis of risk events on power system operations. It also describes the challenges of modelling, distribution networks, optimal scheduling, multi-stage planning, deliberate attacks, cyber-physical systems and SCADA-based smart grids, and how to overcome these challenges. Further, it highlights the resiliency issues using various methods, including strengthening the system against high impact events with low frequency and the fast recovery of the system properties. A large number of specialists have collaborated to provide innovative solutions and research in power systems resiliency. They discuss the fundamentals and contemporary materials of power systems resiliency, theoretical and practical issues, as well as current issues and methods for controlling the risk attacks and other threats to AC power systems. The book includes theoretical research, significant results, case studies, and practical implementation processes to offer insights into electric power and engineering and energy systems. Showing how systems should respond in case of malicious attacks, and helping readers to decide on the best approaches, this book is essential reading for electrical engineers, researchers and specialists. The book is also useful as a reference for undergraduate and graduate students studying the resiliency and reliability of power systems.


Enhancing the Resilience of the Nation's Electricity System

Enhancing the Resilience of the Nation's Electricity System

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2017-09-25

Total Pages: 171

ISBN-13: 0309463106

DOWNLOAD EBOOK

Americans' safety, productivity, comfort, and convenience depend on the reliable supply of electric power. The electric power system is a complex "cyber-physical" system composed of a network of millions of components spread out across the continent. These components are owned, operated, and regulated by thousands of different entities. Power system operators work hard to assure safe and reliable service, but large outages occasionally happen. Given the nature of the system, there is simply no way that outages can be completely avoided, no matter how much time and money is devoted to such an effort. The system's reliability and resilience can be improved but never made perfect. Thus, system owners, operators, and regulators must prioritize their investments based on potential benefits. Enhancing the Resilience of the Nation's Electricity System focuses on identifying, developing, and implementing strategies to increase the power system's resilience in the face of events that can cause large-area, long-duration outages: blackouts that extend over multiple service areas and last several days or longer. Resilience is not just about lessening the likelihood that these outages will occur. It is also about limiting the scope and impact of outages when they do occur, restoring power rapidly afterwards, and learning from these experiences to better deal with events in the future.


Enabling Resiliency of the Electric Distribution Systems During Extreme Events

Enabling Resiliency of the Electric Distribution Systems During Extreme Events

Author: Sayonsom Chanda

Publisher:

Published: 2018

Total Pages: 190

ISBN-13:

DOWNLOAD EBOOK

The resiliency of the electric power grid to extreme events is a fundamental motivation for modernizing the aging and vulnerable critical infrastructure. The alarming rise in the number of incidences of cyber-attacks and severe storms over the last few years have caused prolonged power outages for millions of customers. The financial impact of these events upon the utilities has been several hundred billions of dollars.The objective of this dissertation is to develop a comprehensive framework and algorithms for enabling resiliency of power distribution systems - encompassing time-span from planning to post-event restoration and recovery that would minimize the power outages resulting in less economic losses and public inconveniences.Some of the main challenges of the industry in planning - are the broad range of interpretations of power distribution system resiliency, based on the time available for preparing before an event happens and recovering afterward, and lack of detailed, region-specific distribution models. This dissertation addresses these problems extensively. A mathematical model for studying the propagation of extreme events in the cyber-physical power grid has also been discussed.Enabling resiliency in near-term or during the contingency requires the ability to perform power flow and restoration calculations for the impending or ongoing threat. Thus, an event-driven proactive network reconfiguration strategy has been proposed, to study how the path of propagation can impact the operation and restoration of the power distribution system.In the aftermath of an event, the distribution system infrastructure is characterized by uncertain topology, load demand, power resources, and time until power can be completely restored to all customers. In this work, the resiliency of the electric grid has been studied as a robust optimization problem for the effective allocation of scant resources to meet the demands of critical customers during prolonged periods of power outage.The proposed theory and algorithms in this dissertation have been tested on IEEE test systems as well as validated against actual data available from industry partners.


Power Grid Resiliency for Adverse Conditions

Power Grid Resiliency for Adverse Conditions

Author: Nicholas Abi-Samra

Publisher: Artech House

Published: 2017-09-30

Total Pages: 331

ISBN-13: 1630814946

DOWNLOAD EBOOK

Written by a leading expert in the field, this practical book offers a comprehensive understanding of the impact of extreme weather and the possible effects of climate change on the power grid. The impact and restoration of floods, winter storms, wind storms, and hurricanes as well as the effects of heat waves and dry spells on thermal power plants is explained in detail. This book explores proven practices for successful restoration of the power grid, increased system resiliency, and ride-through after extreme weather and provides readers with examples from super storm Sandy. This book presents the effects of lack of ground moisture on transmission line performance and gives an overview of line insulation coordination, stress-strength analysis, and tower insulation strength, and then provides readers with tangible solutions. Structural hardening of power systems against storms, including wind pressure, wood poles, and vegetation management is covered. Moreover, this book provides suggestions for practical implementations to improve future smart grid resiliency.


Infrastructure Management and Construction

Infrastructure Management and Construction

Author: Samad M.E. Sepasgozar

Publisher: BoD – Books on Demand

Published: 2020-05-06

Total Pages: 134

ISBN-13: 1789845483

DOWNLOAD EBOOK

This book covers topics relevant to the concept of infrastructure construction, including key requirements of development such as measuring productivity and maintenance. It presents different categories of sustainability maintenance of critical infrastructures. In addition, it presents a complex simulation model, the reconfiguration simulator, which enables evaluation of the effectiveness of resilience enhancement strategies for electric distribution networks and the required resources to implement them. Then, it discusses health services as a critical sector in this field, which should be able to perform its function, even in times of crisis. The last chapter presents a brief review of different bridges, including the processes of design, material selection, construction, and maintenance.


Quantifying and Improving Resilience in Power Distribution Systems

Quantifying and Improving Resilience in Power Distribution Systems

Author: Shiva Poudel

Publisher:

Published: 2020

Total Pages: 253

ISBN-13:

DOWNLOAD EBOOK

Extreme weather events have a significant impact on the aging and outdated power distribution infrastructures resulting in extended outages and loss of critical services. This calls for the need to ensure resilience in distribution networks by quickly restoring the critical services during a disaster. Unfortunately, the power distribution systems are traditionally designed and operated for known and credible threats and, therefore, are not resilient to extreme events. Fortunately, the aggressive deployment of smart grid technologies provides a source for improving efficiency, reliability, and resilience. The focus of this dissertation is to develop enablers for leveraging the smart grid technologies to enhance the resilience of the distribution networks. Towards this goal, we make the following three major contributions in this dissertation.First, we develop a probabilistic metric to quantify the operational resilience of the distribution grid. The metric is based on Conditional Value-at-Risk (CVaR) measure, where resilience is defined as the conditional expectation of the loss of energy in MWh for events beyond a pre-specified risk threshold. A simulation-based framework to evaluate the proposed metric including the impacts of smart actions, specifically improved restoration and infrastructure hardening on the resilience metric is presented. Second, we investigate the approaches for resilient restoration of power distribution networks using distributed energy resources (DERs). The proposed framework restores critical loads in the feeder while maximizing the post-restoration reliability of restored loads, including tie switches and open-loop distribution system configurations into the optimization formulation, and optimally allocating DERs for an equitable restoration of the critical loads. Further, we also present a new unified decision-making framework that can assist in recovery from both minor and major disruptions in a computationally tractable manner while efficiently utilizing DERs. The proposed formulation is a unified framework to support both the traditional restoration using feeder reconfiguration and the grid-forming DER-assisted intentional islanding methods. Third, we integrate a fault location, isolation, and service restoration (FLISR) application on an ADMS environment using the GridAPPS-D platform. The successful deployment of the FLISR application on the GridAPPS-D platform provides a proof-of-concept for the adoption of advanced applications to support future distribution systems.


Electric Distribution Network Planning

Electric Distribution Network Planning

Author: Farhad Shahnia

Publisher: Springer

Published: 2018-04-09

Total Pages: 392

ISBN-13: 9811070563

DOWNLOAD EBOOK

This book highlights the latest research advances in the planning and management of electric distribution networks. It addresses various aspects of distribution network management including planning, operation, customer engagement, and technology accommodation. Given the importance of electric distribution networks in power delivery systems, effectively planning and managing them are vital to satisfying technical, economic, and customer requirements. A new planning and management philosophy, techniques, and methods are essential to handling uncertainties associated with the integration of renewable-based distributed generation, demand forecast, and customer needs. This book covers topics on managing the capacity of distribution networks, while also addressing the future needs of electric systems. The efficient and economical operation of distribution networks is an essential aspect of ensuring the effective use of resources. Accordingly, this book addresses operation and control approaches and techniques suitable for future distribution networks.


Power Electronics in Renewable Energy Systems and Smart Grid

Power Electronics in Renewable Energy Systems and Smart Grid

Author: Bimal K. Bose

Publisher: John Wiley & Sons

Published: 2019-08-06

Total Pages: 756

ISBN-13: 1119515629

DOWNLOAD EBOOK

The comprehensive and authoritative guide to power electronics in renewable energy systems Power electronics plays a significant role in modern industrial automation and high- efficiency energy systems. With contributions from an international group of noted experts, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers a comprehensive review of the technology and applications of power electronics in renewable energy systems and smart grids. The authors cover information on a variety of energy systems including wind, solar, ocean, and geothermal energy systems as well as fuel cell systems and bulk energy storage systems. They also examine smart grid elements, modeling, simulation, control, and AI applications. The book's twelve chapters offer an application-oriented and tutorial viewpoint and also contain technology status review. In addition, the book contains illustrative examples of applications and discussions of future perspectives. This important resource: Includes descriptions of power semiconductor devices, two level and multilevel converters, HVDC systems, FACTS, and more Offers discussions on various energy systems such as wind, solar, ocean, and geothermal energy systems, and also fuel cell systems and bulk energy storage systems Explores smart grid elements, modeling, simulation, control, and AI applications Contains state-of-the-art technologies and future perspectives Provides the expertise of international authorities in the field Written for graduate students, professors in power electronics, and industry engineers, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers an up-to-date guide to technology and applications of a wide-range of power electronics in energy systems and smart grids.