IRP 3 discusses the enhancements that are needed in the design and construction of buildings and lifeline systems to support a community's social stability, economic vitality, and environmental sustainability.
The Bled workshops have traditionally produced reference documents providing visions for the future development of earthquake engineering as foreseen by leading researchers in the field. The participants of the 2011 workshop built on the tradition of these events initiated by Professors Fajfar and Krawinkler to honor their important research contributions and have now produced a book providing answers to crucial questions in today’s earthquake engineering: “What visible changes in the design practice have been brought about by performance-based seismic engineering? What are the critical needs for future advances? What actions should be taken to respond to those needs?” The key answer is that research interests should go beyond the narrow technical aspects and that the seismic resilience of society as a whole should become an essential part of the planning and design process. The book aims to provide essential guidelines for researchers, professionals and students in the field of earthquake engineering. It will also be of particular interest for all those working at insurance companies, governmental, civil protection and emergency management agencies that are responsible for assessing and planning community resilience. The introductory chapter of the book is based on the keynote presentation given at the workshop by the late Professor Helmut Krawinkler. As such, the book includes Helmut’s last and priceless address to the engineering community, together with his vision and advice for the future development of performance-based design, earthquake engineering and seismic risk management.
The United States will certainly be subject to damaging earthquakes in the future. Some of these earthquakes will occur in highly populated and vulnerable areas. Coping with moderate earthquakes is not a reliable indicator of preparedness for a major earthquake in a populated area. The recent, disastrous, magnitude-9 earthquake that struck northern Japan demonstrates the threat that earthquakes pose. Moreover, the cascading nature of impacts-the earthquake causing a tsunami, cutting electrical power supplies, and stopping the pumps needed to cool nuclear reactors-demonstrates the potential complexity of an earthquake disaster. Such compound disasters can strike any earthquake-prone populated area. National Earthquake Resilience presents a roadmap for increasing our national resilience to earthquakes. The National Earthquake Hazards Reduction Program (NEHRP) is the multi-agency program mandated by Congress to undertake activities to reduce the effects of future earthquakes in the United States. The National Institute of Standards and Technology (NIST)-the lead NEHRP agency-commissioned the National Research Council (NRC) to develop a roadmap for earthquake hazard and risk reduction in the United States that would be based on the goals and objectives for achieving national earthquake resilience described in the 2008 NEHRP Strategic Plan. National Earthquake Resilience does this by assessing the activities and costs that would be required for the nation to achieve earthquake resilience in 20 years. National Earthquake Resilience interprets resilience broadly to incorporate engineering/science (physical), social/economic (behavioral), and institutional (governing) dimensions. Resilience encompasses both pre-disaster preparedness activities and post-disaster response. In combination, these will enhance the robustness of communities in all earthquake-vulnerable regions of our nation so that they can function adequately following damaging earthquakes. While National Earthquake Resilience is written primarily for the NEHRP, it also speaks to a broader audience of policy makers, earth scientists, and emergency managers.
"MOP 144 provides guidance and underlying framework for creating consistency across hazards, systems, and sectors in the design of new infrastructure systems and in enhancing the resilience of existing ones"--
How to be resilient in a professional setting. How do some people bounce back with vigor from daily setbacks, professional crises, or even intense personal trauma? This book reveals the key traits of those who emerge stronger from challenges, helps you train your brain to withstand the stresses of daily life, and presents an approach to an effective career reboot. This volume includes the work of: Daniel Goleman Jeffrey A. Sonnenfeld Shawn Achor This collection of articles includes “How Resilience Works,” by Diane Coutu; “Resilience for the Rest of Us,” by Daniel Goleman; “How to Evaluate, Manage, and Strengthen Your Resilience,” by David Kopans; “Find the Coaching in Criticism,” by Sheila Heen and Douglas Stone; “Firing Back: How Great Leaders Rebound After Career Disasters,” by Jeffrey A. Sonnenfeld and Andrew J. Ward; and “Resilience Is About How You Recharge, Not How You Endure,” by Shawn Achor and Michelle Gielan. How to be human at work. The HBR Emotional Intelligence Series features smart, essential reading on the human side of professional life from the pages of Harvard Business Review. Each book in the series offers proven research showing how our emotions impact our work lives, practical advice for managing difficult people and situations, and inspiring essays on what it means to tend to our emotional well-being at work. Uplifting and practical, these books describe the social skills that are critical for ambitious professionals to master.
Security protections for critical infrastructure nodes are intended to minimize the risks resulting from an initiating event, whether it is an intentional malevolent act or a natural hazard. With an emphasis on protecting an infrastructure's ability to perform its mission or function, Critical Infrastructure System Security and Resiliency presents a practical methodology for developing an effective protection system that can either prevent undesired events or mitigate the consequences of such events. Developed at Sandia National Labs, the authors’ analytical approach and methodology enables decision-makers and security experts to perform and utilize risk assessments in a manner that extends beyond the theoretical to practical application. These protocols leverage expertise in modeling dependencies—optimizing system resiliency for effective physical protection system design and consequence mitigation. The book begins by focusing on the design of protection strategies to enhance the robustness of the infrastructure components. The authors present risk assessment tools and necessary metrics to offer guidance to decision-makers in applying sometimes limited resources to reduce risk and ensure operational resiliency. Our critical infrastructure is vast and made up of many component parts. In many cases, it may not be practical or affordable to secure every infrastructure node. For years, experts—as a part of the risk assessment process—have tried to better identify and distinguish higher from lower risks through risk segmentation. In the second section of the book, the authors present examples to distinguish between high and low risks and corresponding protection measures. In some cases, protection measures do not prevent undesired events from occurring. In others, protection of all infrastructure components is not feasible. As such, this section describes how to evaluate and design resilience in these unique scenarios to manage costs while most effectively ensuring infrastructure system protection. With insight from the authors’ decades of experience, this book provides a high-level, practical analytical framework that public and private sector owners and operators of critical infrastructure can use to better understand and evaluate infrastructure security strategies and policies. Strengthening the entire homeland security enterprise, the book presents a significant contribution to the science of critical infrastructure protection and resilience.
This book provides a new design and evaluation framework based on slope Stochastic Dynamics theory to probabilistic seismic performance for slope engineering. For the seismic dynamic stability safety of slope, it shifts from deterministic seismic dynamic analysis to quantitative analysis based on nonlinear stochastic dynamics, that is, from qualitative to the description of stochasticity of earthquake excitation that meet the needs in related design specification and establish a performance standard. In the nonlinear dynamic time history analysis of slope subjected to seismic ground motion, the term “randomness” is used to express the uncertainty in the intensity and frequency of earthquake excitation for slope engineering dynamic seismic performance. It mainly includes seismic design fortification standard, corresponding ground motion excitation, performance index threshold, and slope deterministic nonlinear seismic dynamic response. Even more than that, the seismic dynamic large deformation approaches of the whole process and comprehensive analysis for flow analysis after slope instability failure. Eventually, the probabilistic seismic dynamic performance of the slope engineering will be characterized by nonlinear dynamic reliability.
In an era of longer hours and shorter contracts, of tighter margins and frequent organizational change, stress can undermine both the mental health and performance of employees. A culture of resilience in the workplace, however, offers the potential to support psychological wellbeing and improve the performance of both people and organizations. This is the first book to provide managers with a guide to fostering psychological resilience within their teams. It synthesises not only the latest cutting-edge research in the area, but also translates this into practical advice for a range of organizational settings. Chapters cover the following important issues: Key personality factors related to resilience How job design and routines can improve employee resilience How to build a resilient team Communicating change and improving teamwork Modelling resilient thinking and behaviour as a leader Selecting the right resilience training for your organisation This is the ideal book for anyone interested in fostering a high-performance and emotionally resilient workforce, whether they are a manager, HR professional or occupational psychologist. Its cutting edge approach will also make it important reading for students and researchers of organizational and occupational psychology.
This book introduces fundamental concepts of cyber resilience, drawing expertise from academia, industry, and government. Resilience is defined as the ability to recover from or easily adjust to shocks and stresses. Unlike the concept of security - which is often and incorrectly conflated with resilience -- resilience refers to the system's ability to recover or regenerate its performance after an unexpected impact produces a degradation in its performance. A clear understanding of distinction between security, risk and resilience is important for developing appropriate management of cyber threats. The book presents insightful discussion of the most current technical issues in cyber resilience, along with relevant methods and procedures. Practical aspects of current cyber resilience practices and techniques are described as they are now, and as they are likely to remain in the near term. The bulk of the material is presented in the book in a way that is easily accessible to non-specialists. Logical, consistent, and continuous discourse covering all key topics relevant to the field will be of use as teaching material as well as source of emerging scholarship in the field. A typical chapter provides introductory, tutorial-like material, detailed examples, in-depth elaboration of a selected technical approach, and a concise summary of key ideas.
Creating Resilient Transportation Systems: Policy, Planning and Implementation demonstrates how the transportation sector is a leading producer of carbon emissions that result in climate change and extreme weather disruptions and disasters. In the book, Renne, Wolshon, Murray-Tuite, Pande and Kim demonstrate how to minimize the transportation impacts associated with these urban disasters, with an ultimate goal of returning them to at least status quo in the shortest feasible time. - Assesses the short and long-term impacts of transportation systems on the natural environment at local, regional and global scales - Examines transportation systems in relation to risk, vulnerability, adaptation, mitigation, sustainability, climate change and livability - Shows how urban transportation investments in transit, walking and bicycling result in significantly lower per capita carbon emissions when compared to investing in sprawling, automobile dependent regions