Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water

Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water

Author: International Atomic Energy Agency

Publisher:

Published: 2003

Total Pages: 236

ISBN-13:

DOWNLOAD EBOOK

This report describes research performed in ten laboratories within the framework of the IAEA Co-ordinated Research Project on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water. The project consisted of exposure of standard racks of corrosion coupons in the spent fuel pools of the participating research reactor laboratories and evaluation of the coupons after predetermined exposure times, along with periodic monitoring of the storage water. A group of experts in the field contributed a state of the art review and provided technical supervision of the project. Localized corrosion mechanisms are notoriously difficult to understand, and it was clear from the outset that obtaining consistency in the results and their interpretation from laboratory to laboratory would depend on the development of an excellent set of experimental protocols. These experimental protocols are described in the report, together with guidelines for the maintenance of optimum water chemistry to minimize the corrosion of aluminium clad research reactor fuel in wet storage.


Research Reactor Aluminum Spent Fuel

Research Reactor Aluminum Spent Fuel

Author: Milton Levenson

Publisher: National Academies Press

Published: 1998-05-20

Total Pages: 240

ISBN-13: 0309591805

DOWNLOAD EBOOK

The U.S. Department of Energy (DOE) is preparing an environmental impact statement (EIS) for management of aluminum spent fuel from foreign and domestic research reactors, much of which is highly enriched in uranium-235. This EIS will assess the need for additional treatment and storage facilities at the Savannah River Site to accommodate the receipt of this fuel, and it also will assess and select a treatment technology to prepare this fuel for interim storage and eventual shipment to a repository for disposal. This National Research Council book, which was prepared at the request of DOE's Savannah River Office, provides a technical assessment of the technologies, costs, and schedules developed by DOE for eight alternative treatment options and the baseline reprocessing option. It also provides comments on DOE's aluminum spent fuel disposal program, a program that is slated to last for about 40 years and cost in excess of $2 billion.


Research Reactor Aluminum Spent Fuel

Research Reactor Aluminum Spent Fuel

Author: National Research Council

Publisher: National Academies Press

Published: 1998-06-06

Total Pages: 240

ISBN-13: 0309060494

DOWNLOAD EBOOK

The U.S. Department of Energy (DOE) is preparing an environmental impact statement (EIS) for management of aluminum spent fuel from foreign and domestic research reactors, much of which is highly enriched in uranium-235. This EIS will assess the need for additional treatment and storage facilities at the Savannah River Site to accommodate the receipt of this fuel, and it also will assess and select a treatment technology to prepare this fuel for interim storage and eventual shipment to a repository for disposal. This National Research Council book, which was prepared at the request of DOE's Savannah River Office, provides a technical assessment of the technologies, costs, and schedules developed by DOE for eight alternative treatment options and the baseline reprocessing option. It also provides comments on DOE's aluminum spent fuel disposal program, a program that is slated to last for about 40 years and cost in excess of $2 billion.


Structural Alloys for Nuclear Energy Applications

Structural Alloys for Nuclear Energy Applications

Author: Robert Odette

Publisher: Newnes

Published: 2019-08-15

Total Pages: 676

ISBN-13: 012397349X

DOWNLOAD EBOOK

High-performance alloys that can withstand operation in hazardous nuclear environments are critical to presentday in-service reactor support and maintenance and are foundational for reactor concepts of the future. With commercial nuclear energy vendors and operators facing the retirement of staff during the coming decades, much of the scholarly knowledge of nuclear materials pursuant to appropriate, impactful, and safe usage is at risk. Led by the multi-award winning editorial team of G. Robert Odette (UCSB) and Steven J. Zinkle (UTK/ORNL) and with contributions from leaders of each alloy discipline, Structural Alloys for Nuclear Energy Applications aids the next generation of researchers and industry staff developing and maintaining steels, nickel-base alloys, zirconium alloys, and other structural alloys in nuclear energy applications. This authoritative reference is a critical acquisition for institutions and individuals seeking state-of-the-art knowledge aided by the editors' unique personal insight from decades of frontline research, engineering and management. - Focuses on in-service irradiation, thermal, mechanical, and chemical performance capabilities. - Covers the use of steels and other structural alloys in current fission technology, leading edge Generation-IV fission reactors, and future fusion power reactors. - Provides a critical and comprehensive review of the state-of-the-art experimental knowledge base of reactor materials, for applications ranging from engineering safety and lifetime assessments to supporting the development of advanced computational models.


Applications of Research Reactors

Applications of Research Reactors

Author: International Atomic Energy Agency

Publisher: International Atomic Energy Agency

Published: 2014

Total Pages: 108

ISBN-13: 9789201450104

DOWNLOAD EBOOK

This publication is a comprehensive study that reviews the current situation in a great number of applications of research reactors. It revises the contents of IAEA TECDOC-1234, The Applications of Research Reactors, giving detailed updates on each field of research reactor uses worldwide. Reactors of all sizes and capabilities can benefit from the sharing of current practices and research enabled via this updated version, which describes the requirements for practicing methods as diverse as neutron activation analysis, education and training, neutron scattering and neutron imaging, silicon doping and radioisotope production, material/fuel irradiation and testing, and some others. Many underutilised research reactors can learn how to diversify their technical capabilities, staff and potential commercial partners and users seeking research reactor services and products. The content of the publication has also been strengthened in terms of current issues facing the vast majority of research reactors by including sections describing user and customer relations as well as strategic planning considerations.


Medical Isotope Production Without Highly Enriched Uranium

Medical Isotope Production Without Highly Enriched Uranium

Author: National Research Council

Publisher: National Academies Press

Published: 2009-06-27

Total Pages: 220

ISBN-13: 0309130395

DOWNLOAD EBOOK

This book is the product of a congressionally mandated study to examine the feasibility of eliminating the use of highly enriched uranium (HEU2) in reactor fuel, reactor targets, and medical isotope production facilities. The book focuses primarily on the use of HEU for the production of the medical isotope molybdenum-99 (Mo-99), whose decay product, technetium-99m3 (Tc-99m), is used in the majority of medical diagnostic imaging procedures in the United States, and secondarily on the use of HEU for research and test reactor fuel. The supply of Mo-99 in the U.S. is likely to be unreliable until newer production sources come online. The reliability of the current supply system is an important medical isotope concern; this book concludes that achieving a cost difference of less than 10 percent in facilities that will need to convert from HEU- to LEU-based Mo-99 production is much less important than is reliability of supply.


Research Reactor Spent Fuel Management: Options and Support to Decision Making

Research Reactor Spent Fuel Management: Options and Support to Decision Making

Author: IAEA

Publisher: International Atomic Energy Agency

Published: 2021-12-14

Total Pages: 147

ISBN-13: 9201202210

DOWNLOAD EBOOK

This publication, resulting from an IAEA coordinated research project (CRP), provides information about available strategies for research reactor spent fuel management, and presents a decision methodology to assist those selecting among several options, to identify the preferred approach for their specific situation. The decision support tools were developed to consider not only the cost of the possible research reactor spent fuel management strategies, but also the non-economic factors that might influence their selection. Examples of the technologies that are currently used by some IAEA Member States are provided. Additionally, this publication provides information about the Excel based decision-support tools developed as part of this CRP, along with case studies and tutorials to assist users.


Structural Materials for Generation IV Nuclear Reactors

Structural Materials for Generation IV Nuclear Reactors

Author: Pascal Yvon

Publisher: Woodhead Publishing

Published: 2016-08-27

Total Pages: 686

ISBN-13: 0081009127

DOWNLOAD EBOOK

Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors. - Introduces the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors and implications for structural materials - Contains chapters on the key core and out-of-core materials, from steels to advanced micro-laminates - Written by an expert in that particular area